
1. Foreword . 3
2. Introduction . 3
3. Release notes . 3
4. Types of users . 4
5. For users . 5

5.1 Search administrator . 5
5.1.1 Adding a new language . 5
5.1.2 Configuration modification . 6
5.1.3 Crawling Files with ManifoldCF . 6
5.1.4 Extracting file content in ManifoldCF and apply OCR . 7
5.1.5 Manage Solr configuration with Zookeeper . 8
5.1.6 Open local files . 9
5.1.7 OpenSearch . 11
5.1.8 Security Management . 13
5.1.9 Solr configuration customization . 15
5.1.10 Speeding up search queries . 18

5.1.10.1 Highlighting configuration . 19
5.1.11 Optimising the index size . 19
5.1.12 Users Management . 21
5.1.13 Update Datafari . 23

5.2 Search experts . 23
5.2.1 Alerts management - Mail Configuration . 23
5.2.2 Analytics . 24

5.2.2.1 Dynamic analytics . 24
5.2.2.2 ELK analytics . 24

5.2.2.2.1 Configure ELK . 25
5.2.2.2.2 Configure ELK (Datafari 3.1 and above) . 29
5.2.2.2.3 Content Analysis . 31
5.2.2.2.4 Content Analysis Over Time . 31
5.2.2.2.5 Usage Statistics . 32

5.2.2.3 Search navigation analytics . 33
5.2.3 Autocomplete configuration . 34
5.2.4 Connectors configuration . 35
5.2.5 Crawling . 36

5.2.5.1 Add a JDBC connector (MySQL, Oracle) . 46
5.2.5.2 Add the JCIFS Connector to Datafari . 49
5.2.5.3 Advanced Crawling website . 50
5.2.5.4 Reset a MCF job . 55

5.2.6 Deduplication management . 57
5.2.7 Facets management . 57
5.2.8 Favorites management . 59
5.2.9 Fieldweights . 59
5.2.10 Likes management . 60
5.2.11 Promolinks management . 60
5.2.12 Query Elevator . 62

5.2.12.1 Admin UI feature . 62
5.2.12.2 Search View Feature . 63

5.2.13 Stopwords management . 64
5.2.14 Synonyms . 65

5.3 Search users . 68
5.3.1 Alerts . 69
5.3.2 Autocomplete . 70
5.3.3 Deduplication . 70
5.3.4 Facets . 71
5.3.5 Favorites . 71
5.3.6 Highlighting . 72
5.3.7 Likes . 72
5.3.8 Promolinks . 73
5.3.9 Searching . 74
5.3.10 Stopwords . 78
5.3.11 Alerts (from Datafari 3.1) . 79

6. For developers . 79
6.1 Add new icon for search results . 79
6.2 Ajaxfrancelabs graphical framework . 79

6.2.1 Displaying thumbnails for autocomplete and results list . 80
6.2.2 Framework architecture and mechanism . 82
6.2.3 Quickly changing the main colors . 90
6.2.4 Tutorial . 90
6.2.5 Widgets and Modules . 115

6.3 Add custom fields in Datafari and display them . 129
6.4 Alerts - Architecture and mechanism . 131
6.5 Alerts - technical doc (from 3.1) . 132

6.6 Architecture . 133
6.7 Custom Solr configuration . 134
6.8 Deduplication : Technical note . 135
6.9 ELK . 136
6.10 Faceting . 138

6.10.1 Manually adding facets to the Datafari UI . 139
6.11 Fieldweights - Architecture and mechanism . 146
6.12 Likes and Favorites . 147
6.13 Logging . 151

6.13.1 ELK logs exploitation . 152
6.14 Save search - technical doc . 153
6.15 Security . 153

6.15.1 CustomCombinedRealm - Architecture and mechanism . 154
6.15.2 Understanding Security Realms . 156

6.16 Semantics . 159
6.16.1 Link an ontology . 159
6.16.2 Promolinks - architecture and mechanism . 161
6.16.3 Synonyms and stopwords . 162

6.17 Setup Development Environments . 163
6.17.1 Setup development environnement with Eclipse (Linux) . 163

6.17.1.1 Setup development environment with Eclipse (Linux) for Datafari 2.0 . 169
6.17.1.2 Setup development environment with Eclipse (Linux) for Datafari 2.x - Maven . 176
6.17.1.3 Setup development environment with Eclipse (Linux) for Datafari 3.1 . 193
6.17.1.4 Setup development environment with Eclipse (Linux) for Datafari 3.x - Maven . 197

6.18 Unit Testing . 214
6.19 Utility logs . 216

6.19.1 Core Monitoring logs . 216
6.19.2 Statistics logs . 218

6.20 Widgets and CSSs good practices . 219
6.21 Search Index . 219
6.22 Data Schemas . 220

6.22.1 User data . 220
6.22.1.1 Likes and Favorites Schema . 220
6.22.1.2 Preferred language . 221
6.22.1.3 Roles . 222

Foreword
Datafari is the ideal product for those who want to analyse and search through their data, while using advanced open source technologies.
Datafari combines and , to allow its users to search through many different and diverse data sources: their fileApache ManifoldCF Apache Solr
shares, their cloud shares (dropbox, google drive…), their databases, but also their emails and many more. Available as community or enterprise
version, Datafari has its specificities:

Its open source licence is non aggressive as its under : you are free to do whatever you want with it, you just need toApache v2 licence
mention that you’re using it.
It combines several popular Apache projects: Solr, ManifoldCF, and Cassandra, which guarantees stability over time.
It provides analytics capabilities, through the integration of Banana and ELK.

Introduction
Be it for users or for companies, the amount of data is increasing exponentially. On top of it, the challenge of the cloud multiplies the number
and heterogeneity of systems hosting data. Search engines are here to tackle this challenge. They can connect to many systems, propose a
single view on the entirety of available data. Contrarily to web search engines, enterprise search engines are 100% controlled by you, and
have access to data which belong to you, and which are not necessarily public. These search engines guarantee the security of access to
these data.

Among the many existing solutions, a majority is proprietary : you acquire a licence, you pay for support, and you buy the integration.
However, a large chunk on the basic functionalities are now available as open source, and don’t require massive investments. The big
players of the web have made this choice: Linkedin, eBay, Twitter, Salesforce, Kelkoo… They all use open source tools.

However, the most well knowned tools, Apache Lucene and Apache Solr, are only the heart of a search solution. They do not provide any
framework to manage the access to the data sources, they do not handle security, and they do not manage backup or monitoring activities.
Other complementary open source projects are available, but the integration is not always easy. This is where Datafari is standing: it
integrates these technologies, using as much as possible projects using an Apache licence (or equivalent), in order to remain non aggressive
for companies.

We wanted to offer to the community an easy to use tool, affordable – even free – for many use cases, but also able to scale up in order to
manage hundreds of millions of indexed documents, thanks to SolrCloud. You will find in this document an overview of Datafari, in order to
better understand it, use it, even extend it. Obviously, we encourage the users community to help us in the evolution of this open source tool.
In the architecture section, you will discover the architecture of Datafari and its main components. In the crawling section, we will detail the
crawling section and its usage. In the indexing section, we present the content indexing part of the search engine. In the search section, we
cover the search part of the search engine, which means how do the queries and search algorithm work. In the user interfaces section, we
present the default user interface used by Datafari. In the security section, we cover the security challenges. In the analytics section, we will
learn how to monitor Datafari. In the use cases section, we present use cases which you can use as a way to kickstart you own projects.

Release notes
Target release 3.1

Document status RELEASE

Document owner Olivier Tavard

Designer

Developers Olivier Tavard, Aurélien Mazoyer, Julien Massiera

QA Olivier Tavard

Major changes from v3.0

User documentation
In this you will learn all youuser documentation section,
need about Datafari. Whether you are the search
manager, a standard or the Datafari system administrator,
we cover in this section the functionnalities of Datafari.

Developer documentation
In this , you will learndeveloper documentation section
how to set up a proper development environment, as well
as the test environment into place. For now, only the
development environment is documented.

http://manifoldcf.apache.org/en_US/index.html
http://lucene.apache.org/solr/
http://en.wikipedia.org/wiki/Apache_License
https://datafari.atlassian.net/wiki/display/~olivier

New and updates:

Tika updated to version 1.14
Manifold CF updated to version 2.5
Improved security for Active Directory connections
Improved security for Tomcat JNDI Realm
Auto-configuration of ELK on the first start of Datafari
New fields for EXIF images metadata
New preferred language feature

 Bug fixes: (for the detailed history):check github

Bug fixes for Likes/Favorites
Query elevator fix
Synonyms fix (press enter bug)
Fix Likes not inserted into Cassandra
Fix for spellcheck and hyphen words

Major changes from v2.0

Solrcloud activated by default
Graphical monitoring of the Datafari clusters
Query elevator admin functionality
Remodeling and aggregation of the logs, centralised towards ELK.

Major changes from v1.0

Ajaxfrancelabs has been completly revamped:
New responsive design
New widgets

Apache Cassandra is integrated to handle user management
Migration to Solr 5
The admin UI has been completly revamped:

Harmonisation of the different components, leveraging the great Devoops V2 admin theme
New stable functionnalities:

User management
Connection to AD through LDAP
Promolinks
Synonyms
Size limitation
Autocomplete configuration

New experimental functionalities:
Likes and favorites
Alerts
Deduplication
OCR
Facets configuration
Field based boosts

Types of users

Starting with v2.0, Datafari proposes four distinct roles, which have access to different

sets of functionalities.

Those four roles are: , , , . The last two roles have beenanonymous search user connected search user search expert search administrator
created to distinguish the activity of optimising the search engine from a relevance/usage perspective and from a technical perspective. Some
details about what these four roles represent.

https://github.com/francelabs/datafari
http://devoops.me/themes/devoops2/

1. Anonymous search user :

This is the most basic type of user. This user can only use the search functionality, and gets only two possible displays: the search bar (including
autocomplete), and the results list (including facets). He has no access to functionalities such as alerts, statistics, saving favorites, or liking
results. Also, since he is anonymous, he can only search through public data. Anything that has been labelled as restricted in terms of visibility
(e.g. through ACLs for files) will not be searchable. If searching through these secured documents is required, the search user will need to switch
to the "connected search user" role.

2. Connected search user :

This is a role similar to the anonymous search user role, except that it proposes more search functionalities. Obviously, the user can search using
the search bar (including autocomplete) and the results list (including facets). Contrarily to the anonymous user, he has access to functionalities
such as alerts and saving favorites. To reach these functionalities, the searcher needs to go in his administration panel, where he will see the
required tabs. Also, he can search through secured documents. This means that when searching, Datafari does a security check on the
documents and the user, and displays in the search result all the documents that the connected search user is allowed to see. Check the pages
detailing the alerts functionnality and likes and favorites functionality to learn how to use it.

3. Search expert :

The search expert is responsible for maintaining the relevance of Datafari, monitoring its usage, and managing its community of users. He
ensures that queries with no clicks are not left alone. He checks the vitality of the system in terms of queries. He manages the promolinks.
Beyond Datafari, he also ensures that people are aware of the tool, and he trains them if necessary. The expert has access to a range of
functionalities from his administration interface: statistics through a graphical dashboard, promolinks management, synonyms and stopwords
management, field based boosts, documents elevation, duplicate identifier, OCR activation, user management. We don't detail these
functionalities here, they have dedicated sections in the documentation.

4. Search administrator :

The admin is responsible for maintaining the datafari system. He is the one in charge of restarting the server, monitoring the performances,
checking the logs, ensuring that the hardware specs are still compatible with the number of documents indexed and the number of queries per
second. He has a range of administration functionalities available from his admin panel: statistics through a graphical dashboard, logs search
dashboard, system alerts (both for connectors and for the search engine), user alerts overall performance, user alerts scheduler activation, size
limitations for the indexing phase. These functionalities are detailed in their respective sections of the documentation.

For users
Welcome to the users documentation about Datafari. Datafari is a packaged enterprise search solution, in open source under Apache v2 Licence,
combining Apache Solr, Apache ManifoldCF, ELK and Ajaxfrancelabs. To learn more about Datafari as a product, you can go to the main page of

. Or if you want to know more about the creators - and main contributors - of Datafari, visit the .Datafari corporate site of France Labs

For clarity, we have decided to split this documentation based on the types of users. This structure may not be optimal, but at least it gives a bit of
structure.

Search administrator

This section lists the management functionalities of Datafari for the search administrator.

The admin is responsible for maintaining the datafari system. He is the one in charge of restarting the server, monitoring the performances,
checking the logs, ensuring that the hardware specs are still compatible with the number of documents indexed and the number of queries per
second. He has a range of administration functionalities available from his admin panel: statistics through a graphical dashboard, logs search
dashboard, system alerts (both for connectors and for the search engine), user alerts overall performance, user alerts scheduler activation, size
limitations for the indexing phase. These functionalities are detailed in their respective sections of the documentation.

Adding a new language

For now Datafari is preconfigured for English, French, Italian, Arabic and Brazilian Portuguese. Still, its aim is to have a global reach, so the steps
to enable additional languages is rather straightforward and can be found here. In case you did it, please contact us so that we can integrate it in
the next releases of Datafari !

Step-by-step guide

http://www.datafari.com/en
http://www.datafari.com/en
http://www.francelabs.com/en

1.

2.

3.

4.

1.

2.

3.

4.

For the internationalization of the user interface, we use the i18n java library:

The folder to store the i18n config files is here : . Just open it and add your newdatafari/WebContent/js/AjaxFranceLabs/locale
language. For example if you add German translation, put here a file named de.json.
 Add the new langage in the Java class com.francelabs.datafari.utils.LanguageUtils.java :

public static final List<String> availableLanguages =
Arrays.asList("en", "fr", "it", "ar");

Add the new language in WebContent/js/AjaxFranceLabs/i18njs.js :

availableLanguages : ['en', 'fr', 'it', 'ar'],

Finally launch the ant script datafari-dev.xml to take into Datafari the modifications.

For the internationalization of the language detection, indexing and search by the Datafari Solr engine, follow these steps:

Modify the dedicated Solr updateprocessor which is declared in the ,DATAFARI_HOME/solr/solr_home/FileShare/conf/solrconfig.xml
that you can find at which detects the languages based on the fields content and title. By default,updateRequestProcessorChainDatafari,
we use English and French. In order to add a new language, modify the new language to the element ". "langid.whitelist
Modify the Solr schema to handle the new language, which you will find at DATAFARI_HOME/solr/solr_home/FileShare/conf/schema.

. You will notice that we already have the following two fields which are language specific, namely content and title. Therefore, wexml
have " ", " ", " ", " ". You need to create your specific " " and " " fields for your newcontent_en title_en content_fr title_fr content_xy title_xy
language.
Modify the searchrequesthandler named select in the . There,DATAFARI_HOME/solr/solr_home/FileShare/conf/solrconfig.xml
change the parameters et : put the following new fields: and to the existing chain of parameters.qf pf title_xy content_xy
Now you can restart your Datafari for the changes to be taken into account.

Related articles

Adding a new language

Configuration modification

You can edit the file DATAFARI_HOME/tomcat/conf/datafari.properties to edit the configuration of Datafari.

ALLOWLOCALFILEREADING

It is related to the content that you index with ManifoldCF : local filesystem crawling.
It allows you to change the way that you can open local files in the Datafari Search interface.

If the setting is at , it means that you do not need any extension installed on your browser to open local files (see this page for informationtrue
about it). Indeed Datafari opens the file for you and sends it to you directly when you click on the document link.

If the setting is at , you need to have specific settings enabled on your browser to open the document because it becomes a normal link tofalse
the resource.

Crawling Files with ManifoldCF

You can either send us your new language either directly or using github, either way is fine by us as the modifications are not huge. We

will send you a if you share that with us, so that you can show the community you are a real Datafarian cool Datafari T-Shirt

 The date of LibreOffice documents is not crawled correctly.
Dates extraction is not available on plain text documents.

 The local file crawler is a DEMO connector that shouldn't be used for production environments.
It has a bug in the extraction of the modification date of the documents (making Date facet not working).

A good alternative to the local file crawler is the "Windows share" (a.k.a. JCIFS connector), that may be used to crawl files in a file shared

directory (it works under Linux as well).
Documentation on how to setup a samba share on Linux here

Download jcifs-1.3.xx.jar from to DATAFARI_SOURCE_DIR/mcf/mcf_home/connector-lib-proprietaryhttp://jcifs.samba.org/src/
Then edit the file DATAFARI_SOURCE_DIR/mcf/mcf_home/connectors.xml and uncomment the line :
<!--repositoryconnector name="Windows shares" class="org.apache.manifoldcf.crawler.connectors.sharedrive.SharedDriveConnector"/–>

To take into account your modification, do as follows:

If you have already installed Datafari:
- stop Datafari if running,
- change the installation status of Datafari to "STATE=installed" in the file DATAFARI_INSTALL_DIR/bin/common/init_state.properties,
- start Datafari.
If you are running Datafari in development environment:
Restart Datafari.

Extracting file content in ManifoldCF and apply OCR

By default, Datafari uses the Apache Solr Extracting Handler (aka Solr Cell) that leverages Apache Tika to extract the content that will be indexed
from the crawled files. To limit the resource consumption (especially the network if ManifoldCF is installed on an external server), it is possible to
use Tika directly in ManifoldCF. In this case, the content is extracted directly in ManifoldCF, and only the content that should be indexed is sent to
Apache Solr. A Tika Transformation Connection is configured by default in Datafari. To use it, you simply have to add it to your crawling job in
ManifoldCF :

Then, click on "Insert Transformation Before". You can now go to the tab "Boilerplate" and select "Extract Everything" :

https://help.ubuntu.com/community/How%20to%20Create%20a%20Network%20Share%20Via%20Samba%20Via%20CLI%20(Command-line%20interface/Linux%20Terminal)%20-%20Uncomplicated,%20Simple%20and%20Brief%20Way!
http://jcifs.samba.org/src/

Now your crawling job is ready to use Apache Tika directly in ManifoldCF to extract the content of the crawled files. You can also use Tesseract
OCR to analyse images in order to extract data from image and pdf files. Tesseract OCR is bundled in Datafari. In order to make the ManifoldCF
TikaOCR transformation connector able to use Tesseract to do the OCR analysis, you have to change the property " " in OCR /opt/datafari/tomcat/

 from " " to " ". Then restart Datafari.conf/datafari.properties false true

Manage Solr configuration with Zookeeper

The search administrator has the task to manage the Solr configuration via upload it or download it from/to Zookeeper.

Indeed with Datafari 3+ and the SolrCloud mode by default we cannot directly edit the configuration on the file system and reload the core. The
Solr configuration is now stored in ZK.

1.Modify the configuration, send it back to Zookeeper and reload the Solr collection

Edit the Solr configuration
By the UI admin

You can easily modify some parameters of the Solr configuration by the UI admin like the synonyms.

by the file system

You can change the configuration in the filesystem directory to change precise parameters that you cannot change directly in the UI for example.
The path is : /opt/datafari/solr/solrcloud/FileShare/conf

Send the new configuration to ZK

When you are done with your changes, you have to send the new configuration to ZK.

You can do it directly by the UI : click on the tab Zookeeper located in Search engine configuration.

1.
2.
3.

Now click on the button Upload configuration to ZK.

Doing that, your modified configuration is now stored in ZK.

The final step is to load it into Solr.

Reload Collection

We now tell to the Solr collection FileShare to reload itself to have the latest version of Solr configuration from Zookeeper.

For that, click on the button Reload.

Be careful to not do it during heavy load of Solr, especially during indexing time.

2. Download Solr configuration from ZK

If you want to replace the Solr configuration present on the filesystem by the Solr configuration present in ZK, you can do it also by the Zookeeper
Admin UI.

Click on the button Download. The Solr configuration present in /opt/datafari/solr/solrcloud/FileShare/conf will be replaced by the Solr
configuration from the ZK server.

Note : if you add new files on the local file system they will not be deleted from the Solr configuration from the ZK server. in order to have a clean
copy of the Solr configuration you can erase all the content of the folder /opt/datafari/solr/solrcloud/FileShare/conf and after that download the
configuration from ZK server.

Open local files

Open local files with Chrome
Open local files with Firefox
Open local files with Internet Explorer

1. Open local files with Chrome

By default (and for security !), Chrome forbids the opening of urls pointing towards local files, from a web browser. There is a workaround using
the Localinks extension:

https://chrome.google.com/webstore/detail/locallinks/jllpkdkcdjndhggodimiphkghogcpida

Then activate the extension.

https://chrome.google.com/webstore/detail/locallinks/jllpkdkcdjndhggodimiphkghogcpida

2. Open local files with Firefox

Again, by default and for security, Firefox forbids the opening of URLs pointing at local files, from a web browser. Here is a work around:

Open the AppData folder

To locate it easily in Firefox, click on :

Firefox->Help->Debug help

Then click on Open the corresponding folder

The path sould like the following : C:\Users\Utilisateurs\AppData\Roaming\Mozilla\Firefox\Profiles\xxx.default

2 possibilities :

Either there is already a user.js file, to which you need to add the following lines :
user_pref("capability.policy.policynames", "localfilelinks");

user_pref("capability.policy.localfilelinks.sites", " ");http://192.168.1.88:8080

user_pref("capability.policy.localfilelinks.checkloaduri.enabled", "allAccess");

Or there is no file named user.js, in which case you need to create it and put the lines detailed above.

You then need to copy user.js into the folder, to stop Firefox (check that the process has been killed) and restart it. The local files should open
normally.

3. Open local files with Internet Explorer

Open Internet Explorer

Go to Internet Options

http://192.168.1.88:8080

Go to the security tab

Click on Trusted Sites

Click on Sites and add the ip address of your datafari, starting with http:// (do not add the port number, just the IP)

Restart your windows explorer, do another search and voila !

OpenSearch

In this page, we will show you how to generate OpenSearch standard responses from your Datafari's Solr indexes.

Therefore you can use it on your Windows explorer windows directly if you want.

You will need two files in order to do that :

A OSDX file
A XSLT file

The files are present in DATAFARI_SRC/dev-tools/opensearch

On your Datafari server

XSLT

We need now to transform the response sent by Solr with the XSLT writer to be compliant with the OpenSearch format.

To do that, we add the opensearch.xsl file in DATAFARI-SRC/solr/solr_home/FileShare/conf/

The fields displayed will be the title, the last modification date and the snippet highlighted for each document.

To take the file into account, you need either to reload the FileShare Solr core or restart Datafari.

On your Windows PC desktop

OSDX file

Copy the file datafari.osdx into your PC. This file contains the Solr connection information.

Edit the file to change the address of your Datafari server :

<Url type="application/rss+xml"
template="http://localhost:8983/solr/FileShare/opensearch?q={searchTerms
}&wt=xslt&tr=opensearch.xsl"/>

NB : in this example, we allow remote access of Solr and we do not use the search proxy which is not a recommanded way to do it in production.

To enable remote access of Solr, edit the file DATAFARI_SRC/solr/server/etc/jetty-http.xml and comment the line :

<Set name="Host">127.0.0.1</Set>

Then, to install it on your Windows system, just double click on it. You will see a new shortcut on your Windows explorer.

In case you get an “element blocked by Internet security parameters” error in windows explorer when searching, do the following:

 Open Internet Explorer

Go to Internet Options

Go to the security tab

Click on Trusted Sites

Click on Sites and add the ip address of your datafari, starting with http:// (do not add the port number, just the IP)

Restart your windows explorer, do another search and voila !

Security Management

As mentioned in the section about Realms in the Datafari developers documentation, the allows Datafari to use an AD forJNDIRealm
authentification, via an LDAP call. This functionality requires a specific configuration for the LDAP used. To set that, the administrator can use the
admin page “ ” in the section “ ” (see the image below).LDAP Configuration Search engine administration

This functionality requires that you have the Search admin role. Once logged in and into the admin environement, go to the left menu. In “Search
”, click on the LDAP configuration submenu.engine administration

The first time you open this page, the switcher is off.

This means that the ADconfiguration is not used. By clicking on the switcher you will activate the process. Datafari will then be integrated with
your AD. This click is not sufficient enough to make AD work, you also need to configure it correctly. Configure the following:

“ following this syntax: .connection URL” ldap://URLTOSERVER:PORT
“ This is the path to root. Please follow this syntax: cn=GROUPOFUSERS,dn=ROOT2,dn=ROOT2...userBase”:
“ : admin username for the ADConnectionUsername”
“ : admin password for the AD. This will allow Datafari to check the authentification of users by accessing the AD. ItConnectionPassword”
is also used to see the permission of the user in the AD so that for an example we can allow some files to be viewed in FileShare and
some others not by checking the ACL permissions.

When the configuration is done and you click save, the server will test if the configuration is correct by attempting to connect to the AD. If the
attempt is successful, then the modifications are saved and the corresponding files are changed. If the attempt fails, an error message is
displayed below the Save button :

ldap://URLTOSERVERPORT

Once the AD is correctly configured, a user will be able to connect with its AD identifiers without suffix. For instance, assuming there is an “admin”
user and the domain is , he can connect to Datafari by giving only admin as username instead of corp.francelabs.com admin@corp.francelabs.co

.m

Solr configuration customization

In order to have a smooth update behavior for our users, the Solr configuration files of Datafari are configured by default to include custom files
that represent specific parts of Solr. Here is the custom files list and their purpose:

Location = {Datafari_home}/solr/solr_home/FileShare/conf/customs_schema/
custom_fields.incl - Used to add new fields to the FileShare Solr Core. Structure of the file:

Use the files presented below to add whatever you want to the existing Solr configuration of Datafari. They will never be erased by an
update in Datafari 2.x if you perform a modification, plus they are automatically included in the default conf. You can save them in order
to backup your custom conf and easily port them on other Datafari installations.

Keep in mind that if you chose not to use these files and to directly modify the standard solrconfig.xml file and/or schema.xml file, you
will have troubles saving and restoring your modifications on a new Datafari installation or an update process.

http://corp.francelabs.com

<fields>
 <field name="my_field" indexed="true" stored="true"
type="string" multiValued="true"/>
 <field name="my_field2" indexed="true" stored="true"
type="string" multiValued="true"/>

</fields>

custom_copyFields.incl - Used to add custom copy fields to the FileShare Solr Core. Structure of the file:

<copyField source="my_field" dest="my_copy" />
<copyField source="my_field2" dest="my_copy2" />
...

custom_dynamicFields.incl - Used to add custom dynamic fields to the FileShare Solr Core. Structure of the file:

<dynamicField name="my_dynamic_field*" type="string"
multiValued="true"/>
<dynamicField name="my_second_dynamic_field*" type="string"
multiValued="true"/>
...

custom_fieldTypes.incl - Used to add custom field types to the FileShare Solr Core. Structure of the file:

<fieldType name="myType" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory" />
 <filter class="solr.LowerCaseFilterFactory" />
 </analyzer>
</fieldType>

<fieldType name="myType2" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory" />
 <filter class="solr.LowerCaseFilterFactory" />
 </analyzer>
</fieldType>

...

Location = {Datafari_home}/solr/solr_home/FileShare/conf/customs_solrconfig/
custom_libs.incl - Used to add additional libraries that Solr must load. Structure of the file:

<lib dir="./lib/mylibs"/>
<lib dir="./lib/mylibs2"/>
...

custom_request_handlers.incl - Used to add new request handlers for the FileShare Solr Core. Structure of the file:

<requestHandler class="my.requestHandler"
name="/myRequestHandler">
 <lst name="defaults">
 <str name="param1">true</str>
 <str name="param2">json</str>
 </lst>
</requestHandler>

<requestHandler class="my.requestHandler2"
name="/myRequestHandler2">
 <lst name="defaults">
 <str name="param1">true</str>
 <str name="param2">json</str>
 </lst>
</requestHandler>

...

custom_search_components.incl - Used to add new search components for the FileShare Solr Core. Structure of the file:

<searchComponent class="my.searchComponent"
name="mySearchComponent">
 <lst name="component">
 <str name="name">default</str>
 <str name="field">sample</str>
 </lst>
</searchComponent>

<searchComponent class="my.searchComponent2"
name="mySearchComponent2">
 <lst name="component">
 <str name="name">default</str>
 <str name="field">sample</str>
 </lst>
</searchComponent>

...

custom_search_handler.incl - Used to replace the default Datafari search handler with a custom one. This file must contain
only one search handler which respect the following structure:

<requestHandler class="solr.SearchHandler" name="/select">

</requestHandler>

When this file is filled with a custom search handler, you MUST comment the original one in the {Datafari_home}/solr/so
solrconfig.xml file. Otherwise you will have troubles with Solr and Datafari !lr_home/FileShare/conf/

custom_update_processors.incl - Used to add new update processors for the FileShare Solr Core. Structure of the file:

<processor class="my.OwnUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <str name="param">something</str>
</processor>

<processor class="my.OwnUpdateProcessorFactory2">
 <bool name="enabled">true</bool>
 <str name="param">something</str>
</processor>

...

Speeding up search queries

This section lists the possibilities offered by Datafari to lower the response time at query time.

Highlighting configuration

Size limitations allow you to restrict the number of characters analyzed by the highlighter. The higher the number, the better the highlight and the
slower the queries.

To set the size limitation, you have to be the search administrator. Go in the admin UI.

Now set the value to a positive integer, then click the “confirm” button :

Optimising the index size

This section lists the parameters and configurations of Datafari that allow you to modify the size of the Datafari index (some modifications may
have an impact on the search experience).

Set a size limit for the stored field

You can set a value for the limit of the number of characters stored in the index. This requires a full reindex of the data to be taken into account.
For standard scenarios, this value can be equal to the number of analyzed characters for highlighting (). Using a lowHighlighting configuration
value can save disk space. Limiting stored field won't have an impact on the search results but can lead to uncorrect highlighting.To set the size
limitation, you have to be the search administrator. Go in the admin UI:

And set the value in the following tab:

Set a number of token limit for fields:

You can set a value to limit the number of tokens that are indexed in the inverted index for each field of each document. This requires a full
reindex of the data to be taken into account. Using a low value can save disk space. Be carefull, limiting the number of indexed tokens can have
an impact on search results as inverted index is used to find the documents during a standard search query. To set the size limitation, you have to
be the search administrator. Go in the admin UI:

And set the value in the following tab:

You can find more information on the search index in the dedicated section .Search Index

Users Management

As a Search administrator you may want to add/remove or modify a user for Datafari. This can be done through the admin interface of Datafari,
the 'User Management' tab allows you to 'Add' or 'Modify' users:

A very important thing to know is that if you want to add Datafari roles to an existing Active Directory user, you need to 'Add' it in
Datafari as you were adding a fresh new user ! Although, you don't need to add an Active Directory user through this functionality if you
don't want to give him some Datafari roles. If you have configured the Active Directory in Datafari, all the AD users will be able to
connect to Datafari without further configuration.

1) Let's start with the 'Add User'. This functionality is meant to add new users to Datafari or to add roles to an existing Active Directory user. If you
click on this tab, a form will be displayed with some fields to fill :

username: Here you can enter the username you want to create or add to the datafari users in case it is an Active Directory user
AD User: check it if you are adding an Active Directory user to give him roles. If this option is checked, the password fields will disappear.
password: the user password (this field is not available if you have checked the 'AD User' option)
retype password: confirm the user password (this field is not available if you have checked the 'AD User' option)
add role: here you can add roles to the user. By default, 3 roles are available:
- SearchAdministrator: this role give a full access to all the features of Datafari
- SearchExpert: this role give an access to all the SearchExpert features
- ConnectedSearchUser: this is the basic user role that allows the user to connect to Datafari
To add a role, type the first characters of the role, a pop-up suggestion will appear, select the suggestion to confirm the wanted role.
If you want to remove a role, simply click on the red cross associated to the role.

Once you have fulfilled all the fields, you can click on the 'ADD' button. If everything is correct, you will have a green message saying 'User
Successfully Saved', otherwise you will have a red message telling you what's wrong.
When adding an Active Directory user, Datafari will use the AD configuration to test if the user exists before adding it. So a 'User Successfully
Saved' message indicates that the user has been found in the Active Directory and the selected Datafari roles added to it (in the Datafari system,
not as real Active Directory roles)

2) The 'Modify Users' tab shows all the users in Datafari that have roles. All the Active Directory users that don't have any role are not displayed in
this view:

In this view you can:

Change the password of a user by typing a new password and press the 'Return' key on your keyboard
Add or remove roles to a user as in the 'Add User' interface. Adding or deleting a role is immediately taken in account.

Update Datafari

By default Datafari does not provide support for updates and updates are not possible between two major version of Datafari (ex : Datafari 1.X to
Datafari 2.x). Although, an update between two minor versions of Datafari should work (ex: Datafari 2.0 to Datafari 2.X), but we strongly
recommend you to backup your current version before doing it.
To update Datafari, you only need to run the 'dpkg -i [path to the Datafari .deb file]' command. All the files that have changed in the new version
will be updated but if you have followed our recommendations concerning the and the Widgets and CSSs good practices Custom Solr

, none of your modifications should be affected and neither the Solr index or the data should have changed.configuration

Search experts

This section presents the configuration, management and analytics tools that the search expert can
leverage in Datafari.

The search expert is responsible for maintaining the relevance of Datafari, monitoring its usage, and managing its community of users. He
ensures that queries with no clicks are not left alone. He checks the vitality of the system in terms of queries. He manages the promolinks.
Beyond Datafari, he also ensures that people are aware of the tool, and he trains them if necessary. The expert has access to a range of
functionalities from his administration interface: statistics through a graphical dashboard, promolinks management, synonyms and stopwords
management, field based boosts, documents elevation, duplicate identifier, OCR activation, user management. We don't detail these
functionalities here, they have dedicated sections in the documentation.

Alerts management - Mail Configuration

Search admin: managing the alerts mechanism

Using the search admin role, you first need to configure the alert mechanism so that it uses the smtp server to send emails.

The Alerts Administration UI allows to graphically edit the config file alerts.properties which is stored in InstallationDirectoryDatafari/tomcat/conf/

It needs the following information:

 SMTP = the name of the SMTP host
 Address = the sender address ()exemple@exemple.com

User = the username (usually it will be the address)
Password = the password of the mail address

For Instance :

smtpHost = ;smtp.gmail.com
from = ;datafari.test@gmail.com
username = ;datafari.test@gmail.com
password = ********;

http://smtp.gmail.com

Once this is configured and saved, Datafari will automatically restart the alerts to take into account your modifications.

The search admin has more access rights than a connected search user. He gets the same type of information, except that he sees it for
everyone. The only thing he cannot do is to create alers on behalf of other users.

Analytics

Datafari proposes by default two analytics page:

a , focusing on search behavior, taking into account a notion of "navigation" of users when they do their search."static" analytics UI
a , focusing on the search log, allowing the user to create new dashboards, more flexible but with no notion of"dynamyc" analytics UI
"navigation" of users.

Dynamic analytics

This page allows for a flexible analysis of search related information. It consumes a datafari solr core dedicated to Solr logs. It leverages the Bana
, provided by the team, and which is a port of the . It provides a graphical tool tona analytics framework Lucidworks Kibana analytics framework

perform analytics on search logs. For a deeper explanation of Banana, refer to its reference documentation.

We detail here the panels we have pre-configured for Datafari v0.9

The first panel on the upper left, which shows a search bar, is preconfigured with the value. This means that the remainder of the *:*
widgets refer to the empty query. As for Google, an empty query means that all documents are returned. Since we use a search index
that stores all the queries done on Datafari, this empty query returns all the queries that users have done on this Datafari.
The second panel, below the first panel on the left, is a technical widget. Please refer to the Banana documentation for details about it.
The next panel, on the right of the second panel, allows to configure the time window used by some of the widgets. It goes from 5 min to
30d. For instance, it impacts the Event Counts widgets, which presents a timeline.
Event counts: this chart presents a timeline of the number of search queries that have been triggered on the server. One count
corresponds to one search query. If you left the empty query on the first panel, you get the total number of queries done on the server. If
you have entered another value, you will only get on the timeline the queries that contain this term.
The next panel, on the right of "Event counts", presents with a colored histogram all the terms that were co-occuring with the term of the
first panel in the search queries. If you left the empty query in the first panel, this histogram gives you a ranking of the most popular
terms. If you put a term in the first panel, you will get a ranking of the most popular terms colocated with this term. This widget is dynamic.
If you click on one bar, which means one term, you will get an new histogram that shows the most popular terms that are colocated with
both the term of the first panel, and the term of the colored bar you've clicked on.
The last panel at the bottom, is a chart presenting the content of the search queries index. Each line thus represents a user search query.
You can play with the left column, which lets you pick which fields of the index you want to see on the results list.

https://github.com/LucidWorks/banana
https://github.com/LucidWorks/banana
http://www.lucidworks.com
http://www.elasticsearch.org/overview/kibana/

ELK analytics

The 2.2 release of Datafari introduces the ELK layout (Elasticsearch, Logstash, Kibana) to provide a full customizable analytic UI through Kibana.

By default, three dashboards are provided with Datafari:

Content Analysis
Content Analysis Over Time
Usage Statistics

To open or switch between the available dashboards, click on the "Dashboard" tab, then click on the folder button next to the filter bar and select
your dashboard in the list that appears

Configure ELK

By default, aside from Kibana, Elasticsearch and Logstash are automatically configured by Datafari on the first start, to fit with your installation
directory and be ready to run.
If for some reasons (like an architecture decision), you move one or more of these components to a different place than the installation directory
of Datafari, you must modify the ELK environment parameters located in]/elk/scripts/set-elk-env.sh and maybe also the [DATAFARI_HOME [DAT

]/elk/scripts/start-elk.sh and]/elk/scripts/stop-elk.sh scripts.AFARI_HOME [DATAFARI_HOME

The first time you run Datafari, go to the admin UI and to the 'ELK Configuration' page (Statistics/ELK Configuration). You will find this UI:

Let us go through the 2 options:

"ON/OFF" button : Should ELK start when Datafari is running ? (Note that if you swich it ON, it will immediately start ELK)
Kibana URI : The URI to reach Kibana. By default it is http://localhost:5601

This feature is only available from the v2.2 of Datafari !

http://localhost:5601

Once you have started ELK (be aware that the average time for ELK to be 100% operational is approx. 15 seconds on a "standard" PC), click on
any statistic tab ('Usage Statistics', 'Corpus Statistics' or 'Corpus Over Time Statistics'). You should see the following page :

You need to configure the Elasticsearch indexes which will be used for the dashboards. To do so, type 'monitoring' as Index name and click
'Create':

The index should have been found by Kibana and you should see the following page:

Now click on the "Add New" button, and repeat the same steps with the index name 'statistics':

Now click on the "Objects" tab and then on the "Import" button:

And import the]/elk/save/datafari-kibana.json file. If you don't have access to the folders local to the server, you can retrieve it[DATAFARI_HOME
from our github repository :https://github.com/francelabs/datafari/raw/zk/datafari-elk/save/datafari-kibana.json

https://github.com/francelabs/datafari/raw/zk/datafari-elk/save/datafari-kibana.json

Check that you have exactly the same things as the screenshot below: 3 Dashboards, 3 Searches and 13 Visualizations. If it is the case
congratulations ! Your ELK is now fully configured and if you click, in the Datafari admin UI, on any statistic tab ('Usage Statistics', 'Corpus
Statistics' or 'Corpus Over Time Statistics'), you will now see the corresponding dashboard:

Configure ELK (Datafari 3.1 and above)

This feature is only available from the v3.1 of Datafari !

By default, aside from Kibana, Elasticsearch and Logstash are automatically configured by Datafari on the first start, to fit with your installation
directory and be ready to run.
If for some reasons (like an architecture decision), you move one or more of these components to a different place than the installation directory
of Datafari, you must modify the ELK environment parameters located in]/elk/scripts/set-elk-env.sh and maybe also the [DATAFARI_HOME [DAT

]/elk/scripts/start-elk.sh and]/elk/scripts/stop-elk.sh scripts.AFARI_HOME [DATAFARI_HOME

The first time you run Datafari, go to the admin UI and to the 'ELK Configuration' page (Statistics/ELK Configuration). You will find this UI:

Let us go through the 3 options:

"ON/OFF" button : Should ELK start when Datafari is running ? (Note that if you swich it ON, it will immediately start ELK)
Kibana URI : The URI to reach Kibana. By default it is http://localhost:5601
Monitoring User : This parameter should only be filled if you use ACLs for search. In that case, enter here the user used to crawl the
files. Otherwise, ELK won't be able to generate statistics on the corpus.

Once you have started ELK (be aware that the average time for ELK to be 100% operational is approx. 15 seconds on a "standard" PC), click on
any statistic tab ('Usage Statistics', 'Corpus Statistics' or 'Corpus Over Time Statistics'), you will now see the corresponding dashboard:

http://localhost:5601

Content Analysis

This dashboard is based on the generated by Datafari, which are inserted by Logstash in Elasticsearch under theCore Monitoring logs
"monitoring/logs" index.

It shows the documents distribution in the core.
There is one pie chart per distribution type, and by default the types are doc language, doc type and doc source. As you may have understood,
each pie is based on a facet : language, source and extension. You can create more charts, based on other facets by learning how Kibana works,
and how our works as well.ELK

The important thing on this dashboard is the selected time frame. You can see it at the top right of the Kibana, it is set to "Today" by default.
There is a really good reason why it is set to this value. Kibana works with time events and we decided by default to have one time event by day.
It means that we have only one Elasticsearch document by facet value per day. Thus, those "daily documents" are updated each hour by Datafari
when a monitoring iteration happens, and we keep the data displayed in Kibana uptodate. This also means that if you change the time frame of

. Indeed, the time frame of this dashboard must bethis dashboard to another value than "Today", the data used by the charts will be wrong
set to one time event (so the current day if the time event is daily, the current hour if the time event is hourly, and the current minute if the time
event is minutely)

For the moment, the Kibana time event is not configurable from the admin UI of Datafari but only by the code (see for a betterELK
understanding).

Content Analysis Over Time

This dashboard is based on the generated by Datafari, which are inserted by Logstash in Elasticsearch under theCore Monitoring logs

"monitoring/logs" index.

It shows, like the dashboard, the documents distribution in the core, but over the time. Content Analysis
There is one line chart by distribution type which are by default doc language, doc type and doc source. As you may have understood, each chart
is based on a facet : language, source and extension.
You can create more charts, based on other facets by learning how Kibana works, and how our works as well.ELK

Kibana works with time events and we decided by default to have one time event by day. It means that we have only one Elasticsearch document
by facet value by day. Thus, those "daily documents" are updated each hour by Datafari when a monitoring iteration happens, and we keep the
data to display in Kibana up to date. This also means that . If you want more values per day,you will only see one dot per day for each value
you need to change the Kibana time event which is yet only configurable in the code of Datafari.

Usage Statistics

This dashboard is based on the generated by Datafari, which are inserted by Logstash in Elasticsearch under the "statistic/logs"Statistics logs
index.

It shows, various informations about the behaviour of users on Datafari.

In the default dashboard, six visualizations are available:

Requests: represents the number of requests over the time, with, in addition, the distribution between the requests that had at least one
hit and those that did not have any hit
Average Response Time (ms): shows the requests average response time in milliseconds over the time
Top 10 Query Terms: it is the top 10 of the most searched terms in Datafari. For each term the chart shows the total number of time it
was queried composed by the number of queries where users have clicked on a result and the number of queries where they did not.
Hits x Zero Hits: shows the distribution between requests that had at least one hit and those that did not have any
Clicked x Not Clicked: shows the distribution between queries where users have clicked at least on one result and those where they did
not.
Searches details: it is a data table showing all terms queried with some infos

The data used to build this dashboard are based on data corresponding to the selected time frame, which is 24 hours by default.

You can create more charts, based on other data, by learning how Kibana works, and how our works as well.ELK layout

Search navigation analytics

This static page focuses on search analysis, with a notion of "navigation" from users.

Going through the functionnalites, you can first decide which type of analysis you want to see, but selecting it with the buttons on the first line titled
"Type":

Top Queries: it will display in the chart below only the most frequent queries. This allows you to identify trends in terms of what users are
searching for.
No Hits Queries: it will display in the chart below only the most frequent queries where the search engine found no corresponding

https://datafari.atlassian.net/wiki/display/DATAFARI/ELK+layout

documents in its index. This may be a sign that you may have missed a relevant data source repository (and then you should add it in
ManifoldCF), or maybe some documents have not been taken into account at the indexing phase, in which case you should contact your
system administrator to investigate the issue.
No Clicks Queries: it will display in the chart below only the most frequent queries with results, but where users did not click on any
result from the list. This may be a sign that users are not satisfied with the documents displayed. If you have an idea of which document
should be displayed for a given query, you can use the admin functionnality that allows to promote documents based on identified
queries.
Too long Queries: it will display in the chart below the queries sorted by their execution time, from the slowest to the fastest. This is can
be used to evaluate the performance of the engine. But it can also be used as hint for the system administrator if some specific queries
unexpectedly consume a very long time to be executed.

Autocomplete configuration

Auto-complete configuration allows you to set the proportion of documents in the index where a term should appear to be suggested in the
auto-complete. The higher this proportion, the less terms are going to be suggested.

In order to configure auto-complete, you have to be the search administrator, and access to the UI.

Now you can set the value to something between 0 and 1, then click the “confirm” button.

Connectors configuration

Core reload required
Keep in mind that Datafari takes account of the changes only after a reload of the core or a complete restart.

Datafari relies on Apache ManifoldCF for the connection to data sources and retrieval of the data. It has a standalone documentation, which you
can refer to in order to properly setup your connectors: .Apache ManifoldCF official documentation

Crawling

The crawling phase focuses on contacting the remote data repositories, retrieving the data, pre-processing it, and handing it over to the indexing
engine. Using Apache ManifoldCF, it handles full or partial data retrieval, can connect to many different types of data repositories, and handles
the security phase of indexing and searching. The full documentation for the crawl administrator is naturally located on the apache manifoldCF
website, more precisely on the .ManifoldCF 1.5.1 documentation

 The date of LibreOffice documents is not crawled correctly.
Date metadata is not extracted from plain text documents.

We detail here how to kick off quickly in Datafari with a crawling of a local file folder.

From the admin menu, click on Crawler and then on ManifoldCF Admin.

ManifoldCF then asks you for your credentials, which you have setup either in the config xml file, or in the install phase if you used it.

Local and shared files crawling

 The local file crawler is a DEMO connector that shouldn't be used for production environments.

A good alternative to the local file crawler is the "Windows share" (a.k.a. JCIFS connector), that may be used to crawl files in a file

shared directory (it works under Linux as well). You can check its website.official documentation on the Apache ManifoldCF
Documentation on how to setup a samba share on Linux . here
Look at to learn how to use the recommended JCIFS connector.Add the JCIFS Connector to Datafari

https://manifoldcf.apache.org/release/trunk/en_US/end-user-documentation.html
http://manifoldcf.apache.org/release/release-1.5.1/en_US/end-user-documentation.html
https://manifoldcf.apache.org/release/trunk/en_US/end-user-documentation.html#jcifsrepository
https://help.ubuntu.com/community/How%20to%20Create%20a%20Network%20Share%20Via%20Samba%20Via%20CLI%20(Command-line%20interface/Linux%20Terminal)%20-%20Uncomplicated,%20Simple%20and%20Brief%20Way!

You are now in the MCF admin page. Since this is the MCF of Datafari, an output connection is already configured to point to the Solr of Datafari.
You can check that by clicking on "List Output Connections" on the left menu. You will then see on the right, the DatafariSolr output connection.

Since we want to crawl local files, we first need to declare a new repository connection (to define the type of connection), and then we will
instantiate a job that user this repository connection, pointing a the desired local folder. To declare a new repository connection, click on List
Repository Connections on the left menu, then click the Add new connection button on the right panel.

Type in the name and the description, then click on the Type tab.

In the type tab, you pick in the dropdown list File System (note that this is a DEMO connector with known bugs, don't use it for production
), and leave the Authority group to None, since it is quick start exemple. environments

Again, refer to the full documentation of Apache ManifoldCF to dig deeper into these options.

Click on Continue, and a Throttling tab appears, as well as a Save and a Cancel buttons. Click on Save.

Clicking on save displays the View Repository Connection Status. You should have something that looks like the illustration below.

In the menu, click again on List Repository Connections to check that your new connection is now listed. You should have something like this:

Now that we have declared a repository connection of type local file system, we can now "instantiate" it through a job. For that, click on the menu
on "List all Jobs". The right panel will display an empty job list. Click on the button "Add a new job"

You then need to declare a name. Do it and click on the Connection tab

In this tab, click on the Output connection dropdown and select the Datafari specific Output connection "DatafariSolr". On the right, click on the
Repository connection dropdown and pick the one we just created, in our case it is "Files connector". Then click on Continue.

A list of tabs then appears. Check the ManifoldCF official documentation to get an understanding of all of them.

This is where you define the actual location in your local system, that you want the job to crawl and send to Datafari Solr for indexing. For our
example, click on the Repository Paths tab. In the illustration below, we enter the local path "d:\Temp" and click on Add (not Save yet!).

A list of potential regex appears on the right. Here is some info about the regex, taken from the :manifoldcf 2.5 documentation

Using the regex option
For each included path, a list of rules is displayed which determines what folders and documents get included with the job. These rules
will be evaluated from top to bottom, in order. Whichever rule first matches a given path is the one that will be used for that path.

Each rule describes the path matching criteria. This consists of the file specification (e.g. "*.txt"), whether the path is a file or folder
name, and whether a file is considered indexable or not by the output connection. The rule also describes the action to take should the
rule be matched: include or exclude. The file specification character "*" is a wildcard which matches zero or more characters, while the
character "?" matches exactly one character. All other characters must match exactly.

Remember that your specification must match characters included in the file's path. That includes all path separator characters ("/").all
The path you must match always begins with an initial path separator. Thus, if you want to exclude the file "foo.txt" at the root level,
your exclude rule must match "/foo.txt".

https://manifoldcf.apache.org/release/release-2.5/en_US/end-user-documentation.html#jcifsrepository

Click now on the Save button.

You get the confirmation that the job is succesfully created when you see the summary of the created job, in the "View a Job" window. This should
like the following illustration:

To ensure things really went ok, go on the left menu and select "List all Jobs". You should see on the right panel a job list with only one entry, the

To add a rule for a starting path, select the desired values of all the pulldowns, type in the desired file criteria, and click the "Add"
button. You may also insert a new rule above any existing rule, by using one of the "Insert" buttons.

job you just created, as in the illustration below.

It is now time start the actual crawling of the folder. For that, click in the left on menu on "Status and Job Management". You should get a Jobs
status list on the right pane, with only one entry, which is the job you recently created. Click on Start to trigger the crawling, and wait for the magic
to happen.

If you want, you can click several time on the Refresh button to get a feeling that things are being done. This can be observed by looking the last
3 fields of the list: "Documents", "Active" and "Processed", whose numbers should be evolving as you click on Refresh. Wait for a few documents
to be counted in the "Processed" field, and you can then start searching for it in the Search view, which is accessible at any time through the
Search link on the upper right of the Datafari header.

Add a JDBC connector (MySQL, Oracle)

In order to crawl databases as MySQL or Oracle databases, please respect these steps (this example is for Debian and for a MySQL database
but it is almost the same for Windows version) :

Download the Java connector for your database
Add the JAR file into the folder /opt/datafari/mcf_home/connector-lib-proprietary

Here : mysql-connector-java-5.1.35-bin.jar

Edit the file : options.env.unix (in /opt/datafari/mcf/mcf_home) (if you are on Windows, the file is options.env.win)

And add the path to the new lib in the -cp parameter :

./connector-lib-proprietary/mysql-connector-java-5.1.35-bin.jar:

You will have this :

Restart Datafari to load the library
You can now index your Database in ManifoldCF

Configure the repository connection :

You will see the message : 'Driver class not found' .But it is not the case : the driver is correctly loaded.

Next configure the job as usual :

And you will see in the history that the job is correctly executed.

You can check it in Solr admin :

1.

2.

3.

4.

Add the JCIFS Connector to Datafari

Due to licences issues, we do not have the right to package the JCIFS library with Datafari. So you have to download it on your own and to add it
to Datafari.

If you want to add the JCIFS connector to the list of existing connectors, here it is the procedure in order to do it. We distinct 2 cases :

you just downloaded Datafari and you NEVER launched it
you have an existing Datafari running

The beginning is the same for the two cases. If you are in the second case, you just need to follow few more steps that we will detail (please stop
Datafari : bash stop-datafari.sh before beginning).

Download the jcifs-1.3.xx.jar from http://jcifs.samba.org/src/

Copy the JAR to DATAFARI_SOURCE_DIR\mcf\mcf_home\connector-lib-proprietary
So if you are in Debian for example, copy to /opt/datafari/mcf/mcf_home/connector-lib-proprietary

Rename it into jcifs.jar
mv jcifs-1.3.18.jar jcifs.jar
Edit the file /opt/datafari/mcf/mcf_home/connectors.xml and uncomment the line :

http://jcifs.samba.org/src/
http://jcifs.samba.org/src/

4.

5.
a.

b.

c.

<!--repositoryconnector name="Windows shares" class="org.apache.manifoldcf.crawler.connectors.sharedrive.SharedDriveConnector"/

If you just downloaded Datafari and never launched it, you are done !
Additional step if you have an existing Datafari :

You need to initialize the connectors in MCF. To do it the simplest is to add this script in /opt/datafari/bin :
initialize_connectors.sh
Then authorize the execution :
chmod u+x initialize_connectors.sh
Finally launch the script :
bash initialize_connectors.sh
You will see that the connector is now in the list of MCF connectors :

Finally you can launch Datafari. In the repository menu of MCF, the new connector is now present :

Advanced Crawling website

Note : You can use the standard configuration on Datafari for crawling a website (pages and files).

If you want to crawl only webpages (without files), you can customize the part of the page to be indexed. This configuration is done for you.

Starting from Datafari 3.2 version, we add the possibility to crawl easily a website into Datafari.

Indeed, if you use the normal crawling with the web connector from MCF, the raw stream of the page is into your Solr document : it means that it
is the same content that if you display the HTML source code of the page, which is not very nice for the users.

https://datafari.atlassian.net/wiki/download/attachments/16384008/initialize_connectors.sh?version=2&modificationDate=1460998484685&cacheVersion=1&api=v2

In order to easily improve that, we add the library to the Datafari project. JSOUP is basically a HTML parser. You can indicate with a CSSJSOUP
selector which part of the content to be gathered. Thanks to that, you can control the parts of the webpages that you want to index. The tags are
also removed to keep only the content.

Let's follow this tutorial to use it in Datafari in few steps :

1) Go to MCF admin page

Add an output connector :
Click on List Output Connectors.
Then click on the button Add a ne output connector.
The configuration is exactly the same that for the standard output connector that already exists named DatafariSolr so you can
copy/paste all the configuration except the Paths tab configuration and obviously the name of the output connector : in this example Solr.
Change the update handler field to (instead of /update/extract)./update/website
We will see at the end of the tutorial in what consists the configuration of that handler in Solr.

Add a repository connector
Now that we have the configuration for the Solr handler we have to add the Web repository connector and the associated job. So click on
List Repository Connectors. Then click on Add new connection.
Name : what you want, in this example Web.
Connection Type : Web
Authority group : None
For the other values, I invite you to read the MCF documentation about it. You can leave the default configuration, just add an email
address to identify the crawler in the website that you will crawl.

Add a job connector
We can now add the job linked to the repository connector and the output connector that we just added.
Let's see the configuration :
Name : choose whatever you want. In this example : DatafariWebSite

https://jsoup.org/

Connection : choose the repository and the output connection that we just created previously
Seeds : the website that you want to index. Here we enterd http://www.datafari.com
Inclusions : we only want to parse HTML pages so we enter ".*" for the textfield Include in Crawl and ".html$" for the textfield Include in
index.

For the others tab you can let the default parameters.

Here are some further examples for the regex to include/exclude pages, in case you need inspiration

In the screenshot below, we specify that we do not want URL with CSS extension and we exclude from index all the URL which contain in their
path the directory or or . The difference between exclude from crawl and exclude from index is that for example iflayout vti bin SiteAssets
ManifoldCF finds an URL with the folder it will be crawled, then MCF will search into it if it contains other URL to be fetched but this URLlayouts
will not be included in the Solr index.

http://www.datafari.com

2) Optional : customize the parts of the webpage to be gathered : go to Solr admin page
In the default configuration that we add into Solr, we tell to JSOUP to extract the part in the body tag to the field content and the part that is
included in the tag title to the field title.
You can change that in solr_home/FileShare/conf/solrconfig.xml, in the /update/website handler :

So edit the lines f.content.selector and f.title.selector. Let's say that for the title I want the content of the tag h1:first-child and for content the
content of the tag pane-node-body the configuration will be :

After that, you have to relaunch Datafari or to reload the Solr core FileShare :

Click on Core admin and then on the button Reload.

3) Go to MCF and launch the job
Finally you can go back to the MCF admin page and then click on Status dans Job management and then on the button start front of your new
job.
You can after that go to to the search page and see your new Solr documents :

Be aware that this handler only works for webpages, if you want to index documents like PDF documents, Microsoft Office documents, etc... you
have to add an additional job with an other Web repository connector and to choose the standard Output connector. With this configuration Tika
will be used to extract the content of the documents and add the associated metadata. In the job configuration, you have to exclude the webpages
that are indexed by your "JSOUP job".

Reset a MCF job

In this case, we assume that you indexed some data with a MCF job and you want to delete the indexed data before restarting the MCF job.

So in order to do it, the steps are :

Make sure that your job is in "Done" mode :

Go to Jobs -> Status and Job management

Copy your existing job :

Go to Jobs -> List all Jobs

Then click on Copy next to the job name

In the next screen, change the job name, here we add "2" at the end of the name then click on the Save button.

Go back to the List jobs menu

So click on Jobs -> List all jobs.

Now we have the 2 jobs present on the List all jobs menu. We now can delete the original job.

Delete the original job

Click on the Delete button front of the "old" job, so here Enron files. Confirm your choice on the popup.

Go to the Status and job management

Click on Jobs -> Status and Job management. You will see that the Enron files job status is cleaning up. It means that MCF gives the order to Solr
to delete all the documents crawled per this job.

Wait a little and click periodically on the resfresh button until the cleaning process ends. At the end, only the new job is present.

Start the new job

Finally you can launch your new job. Just click on the start button next to it and the data will be crawled and indexed into Solr.

Deduplication management

Administration:

To enable or disable this functionality, we have not done the user interface for now (as of Datafari 1.2). You need to open the datafari.properties
file, which is available in the folder \[Datafari_install_Folder]\bin .

In this file, set the parameter to DEDUPLICATION_IS_ENABLED=true or false depending on your needs. By default, it is set to true as it is
resource consuming. Note that you need to restart Datafari in order for the change to be taken into account.

If you need more technical information, please refer to Deduplication : Technical note

Facets management

From the admin interface, you can create, delete, or modify the order of appearance of the facets displayed in the searchview.

 BETA Version: Instable as of 2.2.1

BETA version, Instable as of version 2.2.1

For that, you need to have the search expert or search administrator role to access the admin interface.

There are two distinct boxes to add a facet:

"Add a basic facet" box: The first one is to add simple facets. The only mandatory form field is the Solr field. You can optionally:
set the pagination to true,
allow the user to select multiple elements of this facet,
customize the name of this facet.

"Add a query facet" box: The second one is for the query facet. It adds custom queries, that you will have to fill, at least one, otherwise
it makes no sense, customize the name of the request.

If you don't customize the name, they will be called by the name of the field which is not explicit.
If you click on the “ ” button, it will add another field for a query and for its query label. In this context, query labeladd a query slot
is the label that will be printed next to the checkbox in the search UI. Note that if the query slot is empty, Datafari will not take into
account the field dedicated to this query label. Also, if no query is declared, Datafari will ignore the request. We do not do validity
checks on the queries, so it is your responsibility to ensure they are correct. If they are invalid, it is highly probable that the global
search will not work anymore. But you can still delete them by clicking on the trash at the end of the line of the bottom table.

Note that you can neither have two facets on a field, nor can you have a basic facet and a query facet on a single field. Thus the fields
that already faceted are removed from the selection

The allows to do the following on existing facets:"List of the facets" box

Deletion, by clicking the trash icon on the right
Change the printing order of the facet. To change it you can drag and drop lines of the table and once the order fits your needs, click the
submit button.

Favorites management

Especially useful for librarians or researchers, the Favorites functionality allows users to save documents that appear in the result.

This functionality is disabled by default. To enable it, to login to the admin section. Browse to “Search Engine Configuration” and then click on
“Likes and favorites” as shown in the image at the left.

Now click on the switcher to activate or deactivate the functionality. If the switcher displays the “OFF” statement, it means that the functionality is
deactivated.

If you click on it, it will be activated. The switcher should display the “ON” statement.

Fieldweights

Every modification you do with this UI will be saved in a custom searchHandler which is located in the
{Datafari_home}/solr/solr_home/FileShare/conf/customs_solrconfig/custom_search_handler.incl, and the original searchHandler from
the standard solrconfig.xml file will be (if not already) commented. Thanks to this behavior you can "rollback" your modifications and
re-apply the default settings by uncommenting the original searchHandler in
{Datafari_home}/solr/solr_home/FileShare/conf/solrconfig.xml and removing the custom one in
{Datafari_home}/solr/solr_home/FileShare/conf/customs_solrconfig/custom_search_handler.incl

This admin UI allows you to modify the weight of any field, in order to optimize the persistence of Datafari regarding your documents.

There are two kinds of weights: those for unique word search and those for multiple words search. So, depending on the kind of weight you want
to modify, select your desired field in the corresponding list. The current weight of the field will be displayed in the text area and you will be free to
set a new value.

Once you are satisfied with the new value, click on the "Confirm" button.

Likes management

Inspired from social networks, the Likes functionality allows users to like a search result. This may be used as part of the relevancy algorithm. In
terms of administration, the search expert can decide to activate or deactivate the functionality.

This functionality is disabled by default. To enable it, you have to log into the admin section. Browse to “Search Engine Configuration” and then
click on “Likes and favorites” as shown in the image at the left.

Now click on the switcher to activate or deactivate the functionality. If the switcher displays the “OFF” statement, it means that the functionality is
deactivated.

If you click on it, it will be activated. The switcher should display the “ON” statement.

Promolinks management

Starting with Datafari v1.2, promolinks can be conceptually assimilated to google adwords: independently from the indexed content, it allows the
search expert to display text in a dedicated place on the screen (usually on top or on the side). This display is triggered by the presence of
specific terms in the search query.

For instance, the illustration below shows a promolink entitled "Nice title" which has the content “report” and is displayed because the keyword
"report" was used in the search query::

Notice that in order to take your modifications into account, you will need to reload the Solr Core conf through the Solr admin UI or
through a restart.

In order to create Promolinks, you need to have the search expert role.

You have access to a dedicated web interface in the admin UI. First, go to the administration menu, click on Search Engine Configuration and
select Capsule in the dropdown list.

You then have access to the promolink admin UI, which shows the list of all existing promolinks. You can do the following operations on the
existing promolinks:

Delete by clicking the red button,
Edit by clicking the keyword,

Using the search bar on top, you can filter out the results by typing in something and pressing enter.

To add a promolink, use the form at the bottom of the page, and fill in the fields to add a promolink.

Note that the dates are optional, that you may fill only one out of those fields, and that if you choose to fill both, the starting date must be prior to
then ending date. If dates have been filled during the add, Datafari will check if, when a search is made on the matching keyword, the current date
is posterior to the starting date and prior to the ending date

Query Elevator

The version 2.3 of Datafari comes with the new "Query Elevator" feature. It allows users with the "SearchExpert" role to elevate documents for
specific queries, in order to make them appear in the top of the results list.

Two possibilities are provided to elevate documents:

Directly from the search view
Thanks to the admin UI

Admin UI feature

From the 2.3 version of Datafari, a new feature is available for the "SearchExpert" and "SearchAdministrator" users in the admin UI, the "Query
Elevator" :

This UI allows you to either modify/remove existing elevate boosts, or create new ones.

In order to access the admin UI described bellow, you will need to be authenticated in Datafari as a user with the "SearchExpert" or the
"SearchAdministrator" privilege. For more details refer to the .Types of users

Let's start with the modify/remove part :

As you can see, it is composed by two sections :

The first one is a "Select" where you will be able to select a query which has elevated documents. The list only contains queries that are
present in the elevate.xml file located in]/solr/solr_home/FileShare/conf.[Datafari_Home
The second is a table where will appear the documents which have an elevate boost for the query you have selected.
The documents are ordered by priority of appearance in the search results, which is also indicated by their "Position" number.
Here you can simply drag and drop the documents to change their position in the search results. You can also remove some of them if
you want by clicking on their associated trash icon.

Once you are satisfied with the order of the documents for the selected query, you can click on the "confirm" button. Datafari will update the
elevate.xml file to match your configuration and will reload the Solr core so your modifications will take effect at the end of the process. Once the
Solr core is reloaded, a confirmation message will appear next to the "confirm" button.

Let's focus now on the create part:

This part allow you to create or add elevate boosts for a query. Notice that if you add new elevate boosts to a query which already has ones, the
new ones will be added at the top of the list in the same order as you have entered them.

Simply type a query in the corresponding text field and then enter the id of the documents you want to elevate for this query. You can add several
documents by clicking on the green cross which will add a new document ID line.

Once your are done with your configuration, click on the "confirm" button. Datafari will update the elevate.xml file to match your configuration and
will reload the Solr core so your modifications will take effect at the end of the process. Once the Solr core is reloaded, a confirmation message
will appear next to the "confirm" button.

Search View Feature

NB : The feature is temporarily unavailable for Datafari 3.0. It will be integrated again in Datafari 3.2.

To see the feature described bellow in the search view of Datafari, you must be connected to Datafari with a user having either the
"SearchExpert" role, or the "SearchAdministrator" role. Refer to the for more details.Types of users

Once you are connected as a "SearchExpert" or a "SearchAdministrator", if you perform a search in Datafari, you will notice two news icons at the
right of each result:

These icons are used to elevate or remove an elevate boost of the associated document for the current query:

: Is used to elevate the associated document. It will add a boost to the document for the current query, that will make it appear as the
first result of the list.
When you click on this button, Datafari modifies the elevate.xml file located in]/solr/solr_home/FileShare/conf to add or[Datafari_Home
move the document as the first of the list and then restart the Solr core. This is the reason why you will have a delay before the search
view is reloaded and the document appears as the first of the results.
If you elevate several documents with this method, notice that it will always be the last elevated doc which will be on top of the results list.
It works like a stack where the last added element is added on top of the stack so it has the priority on the previous inserted one which
also has the priority on the previous etc etc.
This feature is intended to quickly and easily elevate only one or very few documents. As on each click the Solr core is reloaded and that
it may be annoying to find the doc you want to elevate or to wait after each click to elevate several docs, you will prefer to manage the
elevate configuration through the .Admin UI feature

: Is used to remove the elevate boost of the associated document for the current query. If the document has an entry for the current
query in the elevate.xml file located in]/solr/solr_home/FileShare/conf, it will be removed from the list of elevated[Datafari_Home
documents and the Solr core reloaded.
As for the elevate feature, this search view incorporated feature is intended to quickly and easily remove elevate boost on only one or
very few documents. For better control and ergonomic interface, you will prefer the . Admin UI feature

Stopwords management

In order to create Stopwords, you need to be connected with the search expert role.

Go to the administration interface. Then, go to the administration left menu, click on Search Engine Configuration and select Stopwords in the
dropdown list.

Stopwords are language specific. You need to select the language for which you want to manage the stopwords. Once this is done, you get a text
window allowing you to edit the stopwords list. Note that only one search expert at a given time can edit this file. Any other simultaneous tentative
will end up with an error message on the screen.

Synonyms

Synonyms are a way to create a link between words. If a word A is declared as a synonym of word B, then any search for word B will end up
looking also for word A. This allows for instance, to link the words and , which have an identical meaning in a given context, but haveinternet web
a totally dissimilar spelling. Web is a good exemple of the usefulness of giving “directions” to your synonyms. You may want searches for internet
to look for documents with web in it as well, but you may not want searches for web to look for documents with internet in it, in case you are
looking for spider webs. Here you can see that the term “Internet” is linked with the word “web”

When editing the text file, please respect the format used by the Solr 5.1 for its stopwords file :

#Standard english stop words taken from Lucene's StopAnalyzer
a
an
and
are
as
at
be
but
by
for
if
in
into
is
it

Search Expert: managing synonyms

In order to create Synonyms, you need to be connected with the search expert role.

Once in the administration interface, go to the administration menu, click on Search Engine Configuration and select Synonyms in the dropdown
list.

Synonyms are language specific. You need to select the language for which you want to manage the synonyms. Once this is done, you get a nice
interface allowing you to edit the synonyms list. Note that only one search expert at a given time can edit this file. Any other simultaneous
tentative will end up with an error message on the screen.

Here you can delete/add words and add/delete their corresponding synonyms or even delete a synonym entry by clicking on the 'trash' button at
the end of a line.

To add new synonym entry, simply click on the 'Add new synonyms' button, a new line will be created and you will be able to edit this new entry:

Once you are ok with your modifications, click on the 'Validate modifications'. If everything is ok you will be noticed by a message to reload the
Solr core in order to apply the new configuration:

Otherwise you will get an error:

Search users

In this section, we present all the functionalities that can be used by both anonymous and connected
search users.

1. Anonymous search user :

This is the most basic type of user. This user can only use the search functionality, and gets only two possible displays: the search bar (including
autocomplete), and the results list (including facets). He has no access to functionalities such as alerts, statistics, saving favorites, or liking
results. Also, since he is anonymous, he can only search through public data. Anything that has been labelled as restricted in terms of visibility
(e.g. through ACLs for files) will not be searchable. If searching through these secured documents is required, the search user will need to switch
to the "connected search user" role.

2. Connected search user :

This is a role similar to the anonymous search user role, except that it proposes more search functionalities. Obviously, the user can search using
the search bar (including autocomplete) and the results list (including facets). Contrarily to the anonymous user, he has access to functionalities

such as alerts and saving favorites. To reach these functionalities, the searcher needs to go in his administration panel, where he will see the
required tabs. Also, he can search through secured documents. This means that when searching, Datafari does a security check on the
documents and the user, and displays in the search result all the documents that the connected search user is allowed to see. Check the pages
detailing the alerts functionnality and likes and favorites functionality to learn how to use it.

Alerts

Rather than actively searching for documents using queries, alerts allow you to receive information about documents via email. Once you define
a query and a frequency, you regularly receive information about new and modified documents that refer to your query. For instance, the
screenshot below illustrates an email alert on the keyword .Nice

Each document is composed of three pieces of information : the document title, where to find it, and when it has been created or modified.

Connected Search user: managing your alerts

In order to create an alert, you need to be connected with a connected search user role.

We expose a web interface. First, go to the administration menu, click on My Account and select Create Alerts in the dropdown list.

Alerts on plain text (eg .txt) files

 For the moment, the alerts cannot be used on plain text files, as Tika cannot extract any metadata like the modification date from
them.

You then have access to the UI that allows you to create Alerts by filling the fields, and choosing a frequency.

The form asks for the following information:

 Keyword is the word that will be used by the Solr request,
 Subject is the subject of the email,

Mail is the recipient's email address,
 Core is the Solr core in which the request will be made,

 Frequency is the frequency for triggering your search query and sending the corresponding emails.

If you want to know which alerts you have already created, use the search bar on top of the page, and type in what you want to search for (it
searches in the queries keywords). If you want to see all your searches, leave the search bar empty and click on the search icon.

The identified results are then displayed in the results table. You can edit an existing alert by clicking on the keyword, or delete one by clicking on
the red button.

Note that the alert results are related to the currently connected user. Only the search admin role and the search expert role can see all the
existing alerts for all the users.

Autocomplete

Autocomplete displays a dropdown window below the main search bar. It suggests a list pf search queries based on what the user is currently
typing, more precisely by suggesting words that start with what the user is currently typing. To pick a suggestion, the user clicks on it with the left
mouse button.

Deduplication

Datafari can allow a user to see wich documents are duplicated in the result of the search.

The deduplication functionnality uses the MD5 Algorithm for hashing the documents so that solr could recognize which documents are
duplicated.

When activated, users have a special “duplication” facet that appears on the bottom left of the results page. Each item in this facets represents a
set of duplicated documents, with a name and the number of duplications in parenthesis.

When clicking on a facet item, the results display will show all the duplicated documents related to the clicked facet item. This functionality can be
useful to find out how many duplicated documents are present in the corpus.

Facets

Facets allow you to only see the results matching a certain criteria.

It can be the type of a document or its modification date, or its content language. Facets are available in the search and you can click on the
criteria you want to activate or desactivate this functionnality.

Favorites

The favorites functionnality allows connected user to save search results that they appreciate or want to look at later on.

When activated, the search interface will be as follows:

The only difference from a standard search result interface, is that it now includes the “favorite” icon next to each result title.This icon is a little red
flag.

When the flag is empty, it means the corresponding document is not part of the user's favorites.

When the flag is fully red, it means it is part of the user's favorites. Clicking on the flag will add or delete the document into the favorites.

In the screenshot above, is saved as a favorite (fully red flag), is not (empty red flag).crypt.doc Cv_français.pdf

Highlighting

When doing a search, Datafari highlights parts of the results list. The highlight is set on terms of the user queries that can be found in the results
list, be it in the title or in the snippet. This allows for a quick understanding of the document context for the query terms stand.

Likes

Inspired from social networks, allows users to like selected search result entries. When activated, the search interface will be as follows:Likes

The only difference from a standard search result interface, is that it now includes the “like” text below each result entry, as well as the number of
likes, identified with a “thumbs-up” icon.

The display of the “like” button means that the connected user has not liked the document yet.

The display of the “unlike” button means that the connected user has already liked the document. By cliking on the (un)like button, you will switch
the state of the document to liked or unliked.

Next to the (un)like button, the thumbs-up symbol indicates the number of cumulated likes for the document.

In the screenshot above, is liked and only one person likes this document.crypt.doc

Promolinks

Promolinks can be conceptually assimilated to google adwords: independently from the indexed content, it allows the search expert to display text
in a dedicated place on the screen (usually on top or on the side). This display is triggered by the presence of specific terms in the search query.

For instance, the illustration below shows a promolink entitled "Nice title" which has the content “report” and is displayed because the keyword
"report" was used in the search query:

Search expert: managing promolinks

In order to create Promolinks, you need to have the search expert role.

You have access to a dedicated web interface in the admin UI. First, go to the administration menu, click on Search Engine Configuration and
select Capsule in the dropdown list.

You then have access to the promolink admin UI, which shows the list of all existing promolinks. You can do the following operations on the
existing promolinks:

Delete by clicking the red button,
Edit by clicking the keyword

Using the search bar on top, you can filter out the results by typing in something and pressing enter.

To add a promolink, use the form at the bottom of the page, and fill in the fields to add a promolink.

Note that the dates are optional, that you may fill only one out of those fields, and that if you choose to fill both, the starting date must be prior to
then ending date. If dates have been filled during the add, Datafari will check if, when a search is made on the matching keyword, the current date
is posterior to the starting date and prior to the ending date.

In the creation phase, if you type in a keyword that is already used as a keyword for another capsule, the existing capsule will be displayed and
you can choose to replace it or not. This also means that you cannot have two capsules using the same keyword.

Searching

The search phase is the most "intuitive" one, in a sense that it leverages user interface paradigms that are already widespread thanks to web

search engines such as Google or Bing, and also thanks for ecommerce search engines such as eBay or Amazon. We explain briefly here the
different capabilities that Datafari exposes, thanks to the graphical framework Ajaxfrancelabs, and of course thanks to the Apache Solr engine
working behind the scene.

The first page you see when you use the search functionnality, is a simple search bar. Start typing text in it, and the autocomplete automatically
starts proposing you terms that are present in the search index, ranked by "relevance" (the relevance here being mainly correlated to the terms
frequency in the corpus). You can either continue typing, or at any point in time you can click on one of the proposed term. The autocomplete by
default is a term by term autocomplete. If you select a term, and type a whitespace and start typing a second term, the autocomplete will work on
the second term.

Once you've clicked the search icon, the display takes you to the search result page. This page is composed as follows: on the upper part, you
get the standard search bar. On the left, you get the default facets to filter and navigate through the results. And on the right, you get the list of
results ranked by relevance, related to the query terms. These panels use defaults views, and you can refer to the Ajaxfrancelabs framework

 if you want to modify the display. The deeper the modifications, the more probable it is that you will need to modify also thedocumentation
configuration of the Solr of Datafari, in which case you should refer to the reference .Apache Solr 4.8 documentation

Facets panel: by default, the following facets have been configured:
Last modifications: allows to filter based on time windows compared to the current date. Less than 1 month old documents, Less
than 1 year old documents, Less than 5 years old documents.
Type: allows to filter based on document types (pdf, doc, docx, xls, html ...)
Source: allows to filter based on the source repository configured in Apache ManifoldCF
Language: based on Solr capability to autodetect languages, allows to filter based on the documents language.

Results list: by default, each result in this list is composed as follows:
Graphic icon symbolising the document type
Document file name in bold font / Title from the HTML header title in case of web page
Text snippet, 3 lines maximum, surrounding the query terms found in the document. These query terms are highlighted in bold
fonts.
Document path in the source repository (or URL for web pages)

http://www.francelabs.com/afl_documentation.html
http://www.francelabs.com/afl_documentation.html
http://archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-4.8.pdf

Facets have a standard way of working: if you click on a facet value, it will filter out all the results that don't satisfy the facet value condition. In the
illustration below, selecting the pdf value in the Type facet only displays pdf documents in the result panel.

Datafari also proposes the spellchecker functionnality of Apache Solr. In the illustration below, we enter the query term "comminuque" instead of
"communique". The spellchecker automatically proposes a correct word. By default, Datafari does not do a search on this suggestion, but it can
do it with slight modifications.

In the search bar, you can type in several query terms, and you can put operators to fine tune your search, such as AND and OR. Check the
Apache Solr reference documentation for the full list of operators.

Right below the search bar, three buttons allow to modify the search behaviour:

All words: forces the search engine to return only the documents that contain ALL the terms present in the query term
At least one word: that's the standard behavior. The search engine will favor documents that contain all the terms, but it not all terms are
present, it will display the documents that contain a subset of the query terms
Exact expression: forces the search engine to return only the documents that contain the exact expression in the query term. In the
illustration below, only documents containing the exact expression "communique presse" will be return. So a document containing
"presse communique" won't be returned.

Stopwords

Stopwords allows you to ignore identified words at the indexing phase.

If a word listed in the stopword file is found, then Datafari will ignore it when doing the indexing of the corresponding document, except if they are
only words listed as stopwords in the query.

Alerts (from Datafari 3.1)

Since the version 3.1.x of Datafari, the Alerts feature has evolved. You can now create your alert directly from the search view of Datafari. Here
are the steps to follow in order to create an alert:

Authenticate yourself in Datafari
Perform the search on which you want to create an alert
Click on the "Create alert" button
Enter you e-mail address in the corresponding field and select a send frequency
Validate

[Picture]

You can now consult the alerts you have created in the "Parameters" view in the "Alerts" tab.

[Picture]

Here you can click on the "modify" button to change the send frequency of the corresponding alert or delete it.

For developers
This section of the documentation is targeting a technical audience, more precisely developers who want to understand or extend the capacities
of Datafari.

 For an overview of the available Datafari's build and deployment flows, have a look here Distributions HOW-TO

Add new icon for search results

It may happen that you have indexed documents with a specific extension which is not known by Datafari. If this is the case, the concerned
documents will be displayed in the result view without any icon (here Template_Document.dotx):

To correct/avoid this, you will have to add a new icon for your concerned extension in
'DATAFARI_HOME_DIR/tomcat/webapps/Datafari/images/icons'. The file must be a png type and respect the following pattern : [extension_nam

]-icon-24x24.pnge

For example, the icon file to add to the icons folder in order to correct the problem showed above would be : dotx-icon-24x24.png

Of course you can make a copy of an existing icon from the icons directory and rename it.

Once the icon is available, it will be automatically used by Datafari.

https://datafari.atlassian.net/wiki/display/DATAFARI/Distributions+HOW-TO

1.

2.

Ajaxfrancelabs graphical framework

AjaxFranceLabs is a contribution from our company so that the community can manipulate Solr,
Datafari and Constellio through an Ajax Framework.

Spiritually, it is a child of the AjaxSolr framework, and you will see many similarities, in particular at

the architecture level. The AjaxSolr has been a great source of inspiration for us.

Still, the code itself has been done from scratch (except for 2 classes which are almost copy pastes), as there were parts that were rather
different, because of the differences between Constellio and Datafari/Solr.

Although it is not part of the framework per se, we gave a particular care to the widgets that make use of our framework, because we know that
you'll probably start with these widgets in order to get a hands on on our framework (you may even want to keep them as they are).

Displaying thumbnails for autocomplete and results list

This documentation explains how to enable the « pictures » mode for the results display, for instance

if you are indexing videos or pictures.

In searchView.jsp, you need to include « results-illustrate.css » which is in the css folder of datafari. Note that the css is already present,
you just need to uncomment it.
In search.js, you need to replace resultWidget by with ResultIllustratedWidget, using the same attributes that resultWidget had.

This will make space for the image and show it at the left of the results in desktop mode and at the right of the results in the mobile mode. You
can see below how it will appear :

Note that this functionality is not complete yet, as of Datafari 2.0. For now the pointer to the image used is hardcoded. We still need to
create a dedicated field in Solr that will hold the urls to the image, and to modify the widget so that it uses this field.

1.

Now to have the pictures in the autocomplete functionnality, do the following :

In search.js, replace « AjaxFranceLabs.SearchBarWidget » with « AjaxFranceLabs.SearchBarIllustratedWidget », using the same
parameters. And then you have it !

Note that this functionnality uses the following two javascripts, which are included by default « js/AjaxFranceLabs/widgets/SearchBarIllustrated.wi
and « » .dget.js » js/AjaxFranceLabs/modules/AutocompleteIllustrated.module.js

Note also that this functionality is a better fit for suggestions rather than for search autocomplete. For instance, in a digital asset management
scenario, the autocomplete with the image would propose me when clicking on it directly the image rather than triggering a search on the solr. For
now, we have not coded such a suggestion widget.

Framework architecture and mechanism

Code Structure

The framework contains the following folders:

core: the main classes of the framework
manager: implemented managers
module: the different modules
widgets: the different interface widgets

A widget is a part of the user interface (UI) which is attached to a DOM element.
A module is an extension of the widgets.

Eg: my result widget displays all the documents found by the search query and my favorite module will add “stars” to those documents title in
order to save them to my favorite documents.

Architecture diagram

This widget is currently visually optimised for a fixed image size. If the source images do not have this size, we do a basic resize
operation, which may lead to not-so-good-looking displays of the thumbnails.

Interaction between the different components

The manager acts as a master controller. The widgets and modules are dealing with the manager in order to get the information they need and to
modify the query request.

The parameter store stores the different parameter necessary to process the search query.

When a request query has to be processed, the manager calls a web service which receives the search query. This web service answers back to
the manager, which stores the result in a variable (response) that the different components can access.

Class diagram

Core

AjaxFranceLabs offers different utility methods:

string tinyUrl(url, length)

A method that reduces the length of the url given in parameter. Adds ‘…’ at the end if the url have been tined. Leaves everything after the
last / (page name) in the url. length is set to 75 by default.
string tinyString(str, length)

A method that reduces the length of the given string in parameter. Adds ‘…’ at the end if the string have been tined. length is set to 25 by
default.
string truncate(string, length)

Reduces the size of a string if the length of it is superior at length. This method will not slice a word in two if the max length is reach but
keep it and add ‘…’ at the end.
< addMultiElementClasses(source)void

Adds the following classes to the different elements of the source:
first | middle | last
odd | even
e-* where * is the index of the element in the source

Thus you have all the necessary selectors for JavaScript and CSS.
void clearMultiElementsClasses(source)

Remove the classes first, middle, last, even, odd, e-* from the elements of source.
boolean isString(obj)

Returns true if obj is a string.
boolean isRegExp(obj)

Returns true if obj is a RegExp
boolean equals(foo, bar)

Compares the two objects given. Evaluates RegExp.
boolean empty(mixed_var)

Returns true if the mixed_var is empty (‘0’, 0, null, undefined, false, “”)
string trim(str, charlist)

Removes the invisible characters on the beginning and end of the string str. charlist is an optional parameter.
string extractLast(term)

Returns the last term of term (used for the autocomplete widget).
array split(val)

Splits val on the invisible character \u200c (used for the autocomplete widget).
object extend(target, …)

Extends the object target with the other arguments given.
string capitalize(string)

Sets the first letter of a word to upper case. The word is given as a parameter.

The main classes of the framework are:

AbstractManager
AbstractWidget
AbstractFacetWidget
AbstractModule
Parameter
ParameterStore

Any class class has to extend one of these or the AjaxFranceLabs.Class. For this, use the .extend method provided by the AjaxFranceLabs.Class
and any of the previous one.

Architecture of the main classes of the framework

AbstractManager

The manager is the main class of the framework. It is the master controller, the crossroad of all the information going in and out.
This class has to be extended in order to implement executeRequest() which have to make the call to the web service.

Insert architecture of the abstract manager here

AbstractManager class diagram

Variables

constellio: boolean set to true by default. Set to false when using Solr. When set to true, the manager will load your constellio collections
serverUrl: address where the web service calls have to be made
servlet: servlet that have to be used for the web service calls
response: contains the last response from a search query on the search engine
widgets: contains all the widgets of the manager
modules: contains all the modules of the manager
store: a store that contains all the parameters of the search query
collections: the list of collections of the Constellio
collection: the collection currently used

connectionInfo: {
 autocomplete: {
 serverUrl: 127.0.0.1,
 servlet: 'select',
 queryString: 'callFunction=getInformations&type=user
 }
}

Methods

init: import collections if using constellio, initializes the widgets and modules
addModule: adds the module provided in parameter to the module collection (“array”)
addWidget: adds the widget provided in parameter to the widget collection (“array”)
handleResponse: executes the afterRequest method from all the widgets and modules after the search query has been processed
makeRequest: executes the beforeRequest method from all the widgets and modules before processing the search query
executeRequest: must be implemented in a Manager object, this is the method which calls the web service.

getWidgetByID: gets the handle to the widget with ID specified as input.
makeDefaultRequest: performs a select all (*:*) request and updates the address bar with the search query.

Parameter and ParameterStore

Insert architecture parameter/parameterstore

Parameter and ParameterStore class diagram

Parameter

Variables

name: name of the parameter
value: value of the parameter
locals: local variables for nested request

Methods

val: if a parameter is given, change the value of the parameter, return the value instead
local: if value is given, changes the value of the local parameter, returns its value instead
remove: removes a local parameter
string: toString method of the parameter
parseString: parses a string to create the parameter
valueString: transforms value into a string if it is an array and encodes special characters
parseValueString: decodes special characters and transforms the string in array if necessary
escapeValue: quotes the string

ParameterStore

Variables

params: a collection of the parameters

Methods

isMultiple: returns true if the parameter has multiple value
get: returns the parameter, creates it if it does not exists
values: return the value(s) of the parameter
add: add a new parameter, creates an empty Parameter if only name is given
remove: deletes a parameter
addByValue: creates a new Parameter
removeByValue: removes a parameter with the given name and value

string: the toString method of the parameterStore that returns all the parameters on a string form
parseString: parses a string to creates the parameters
find: check if a parameter exists with the given name and value
isParamDefined: helper function to check whether the given parameter name in input is defined or not inside the parameter store.

AbstractWidget

All the widgets have to extend the AjaxFranceLabs.AbstractWidget class or the AjaxFranceLabs.AbstractFacetWidget class.

AbstractWidget and AbstractFacetWidget class diagram

AbstractWidget

Variables

id: a unique id for the widget
elm: element where the widget will be build
manager: a reference to the widget’s manager
type: the type of the widget

Methods

buildWidget: a method that build the main DOM structure of your widget.
beforeRequest: code that have to be executed before the manager send the search query to the web service. This is mainly used when
you have to add parameters to the search query, like the content of the search bar.
afterRequest: code that will be executed after the search query is done. This is mainly used when you have to update the content of
your widget, for example, empty previous result list and include the new result instead.
reset: implement this method to reset the widget (notably after user input).

AbstractFacetWidget

Variables

field: the referring field
selectionType: can take 3 values depending on how you can select facet values:

AND: intersection of facet values
OR: document contains at least one facet value
ONE: can select one facet value at a time

returnUnselectedFacetValues: if set to true, values for the unselected facet will be returned anyway (default: false)

Methods

selectHandler: callback method when a facet element is selected.
unselectHandler: callback method when a facet element is unselected.

AbstractModule

Modules are extension of widgets, they will modify them once they are built.

AbstractModule class diagram

Variables

id: a unique id for the module
manager: a reference to the module’s manager

Methods

beforeRequest: code that have to be executed before the manager send the search query to the web service.
afterRequest: code that will be executed after the search query is done.

Sequence diagram

1.

2.

3.
4.

5.

1.

Execution of a search query

The element (widget, external user or program) triggers a request to the search web service from the manager using the method makeR
equest()
The manager first calls the method of all the widgets and modules it controls. Thus the different widget can, forbeforeRequest()
example, add parameters to the search query
The manager then executes the search query on the web service using the method and wait for its responseexecuteRequest()
When the manager receives the response, it stores it into a local variable (reponse) accessible from all the widgets and modules it
controls
Finally, the manager executes the method of all the widgets and modules it controls, thus, they can update their dataafterRequest()

Widget calling a web service

In order to illustrate this example, I will take the case of the AutocompleteWidget

1.
2.

3.
4.

1.
2.
3.
4.

A user types some text in an input field which has an autocomplete widget attached to it
The autocomplete widget retrieves the data entered by the user into the field and triggers the method from itsexecuteRequest()
manager to retrive the suggestions
The manager answers to the autocomplete widget when it receives the results
The autocomplete widget displays the results

Quickly changing the main colors

To customize the main colors of the UI, you should modify and :results-color.css color.css

To change the green that it is used as background, you should change the attribute background of in . You should also.bc-color color.css
change the . We have separated the color of the footer from the others because of the effect of the shadow that impactsfooter.bc-color
the apparent color.
To change the green used in the pagination and the checkbox of the facets, you should change the line 126 in where the csscolor.css
selectors are :

#facets .checkboxIcon,
#facets_mobile input[type="checkbox"]:checked + label
span.checkboxIcon,
.pagerModule .pages .page,
.pagerModule i

To change the green used in the Searchbox icons (all words, at least one word), edit the file located in imagescheck_radio_sheet.png
folder with a graphics editor.
To change the color of each document's link, edit the file results-color.css. Change the color attribue at the line :

.resultWidget .doc .res .address { color: #378140; }

Tutorial

This demonstration is an introduction to the framework AjaxFranceLabs and will demonstrate how to use it.

In order to do that, you will need to and include it to your workspace.download the AjaxFranceLabs framework

Here are the first steps:

Download the latest update of the version 1 of jQuery on jQuery's website
Create a file where we will add all our code to create the interfacemain.js
Include this two JavaScript files to the html page
Include the file, the result.css from the framework and the font awesome library as bellow.main.css

In a first place, we will create the AjaxFranceLabs manager, configure it and include the searchBar widget which will allow us to process searches
using keywords.
We are going to include the required files as well as their dependencies,

<!-- index.html - Adding a SearchBar widget -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/main.css">
 <link rel="stylesheet" type="text/css" href="css/results.css">
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.

http://www.francelabs.com/afl_download.html
http://jquery.com/

css">

 </head>
 <body>

 <script type="text/javascript"
src="js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript"
src="js/jquery-ui-1.8.23.min.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/uuid.core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/i18njs.js"></script>
 <!-- The framework main file -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Core.js"></script>
 <!-- Required file for the manager -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Parameter.js"></script>
 <!-- Required file for the manager -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/ParameterStore.js"></script>
 <!-- The abstract manager -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractManager.js"></script>
 <!-- An implementation of the manager -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/manager/Manager.js"></script>
 <!-- The AbstractWidget file -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractWidget.js"></script>
 <!-- The SearchBar widget, implementing AbstractWidget -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchBar.widget.js"></script>
 <script type="text/javascript" src="js/main.js"></script>
 <script type="text/javascript" src="js/searchTutorial.js"></script>
 <div id="solr">
 <div id="searchBar"></div><!-- the widget will be inserted
here -->

 </div>
 </body>
 </html>

Now let's create the file .main.js

/* main.js */
$(function($){
 /* Now, we had the widget to the manager */
 //Version 1 - if you do not need to have a variable refering to the
widget
 Manager.addWidget(
 new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar'
 })
);

 //Version 2
 var searchBarWidget = new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar'
 });
 Manager.addWidget(searchBarWidget);

 /* And we initialize the manager */
 Manager.init();
});

The display should look like something like this:

Well, now it would be good to show some results. Lets add the ResultWidget!

In the html file

<!-- index.html - Adding a Result widget -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/main.css">
 <link rel="stylesheet" type="text/css" href="css/results.css">
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.
css">
 </head>
 <body>
 <script type="text/javascript"
src="js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript"
src="js/jquery-ui-1.8.23.min.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/uuid.core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/i18njs.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Parameter.js"></script>

 <script type="text/javascript"
src="js/AjaxFranceLabs/core/ParameterStore.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractManager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/manager/Manager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractWidget.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchBar.widget.js"></script>
 <script type="text/javascript" src="js/main.js"></script>
 <!-- The ResultWidget -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/Result.widget.js"></script>
 <script type="text/javascript" src="js/searchTutorial.js"></script>
 <div id="solr">
 <div id="searchBar"></div><!-- the widget will be inserted here
-->
 <div class="col left"></div>
 <div class="col right">
 <div id="results"></div><!-- the widget will be inserted here -->
 </div>
 <div class="clear"></div>
 </div>
 </body>

</html>

And the javascript file:

/* searchTutorial.js */
$(function($){

 Manager.addWidget(new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar'
 }));
 /* The result widget */
 Manager.addWidget(new AjaxFranceLabs.ResultWidget({
 elm: $('#results'),
 id: 'documents',
 afterRequest : function() { /* implements the method displaying
the documents */
 var data = this.manager.response;
 $(this.elm).find('.doc_list').empty();
 if (data.response.numFound === 0) {
 $(this.elm).find('.doc_list').append('No document found.');
 } else {
 var self = this;
 $.each(data.response.docs, function(i, doc) {
 var title = (doc.title === undefined) ? doc.url :
doc.title;
 if(data.highlighting === undefined ||
(data.highlighting[doc.id].content_fr === undefined &&
data.highlighting[doc.id].content_en === undefined)){
 if(doc.content_fr)
 content = doc.content_fr;
 else
 content = doc.content_en;
 content = AjaxFranceLabs.truncate(content, 200)
 }
 else {
 if(data.highlighting[doc.id].content_fr)
 content =
data.highlighting[doc.id].content_fr;
 else
 content =
data.highlighting[doc.id].content_en;
 }
 $(self.elm).find('.doc_list').append('<div
class="doc e-' + i + '" doc_id="'+doc.id+'">');
 $(self.elm).find('.doc:last').append('<div

class="res">');
 $(self.elm).find('.doc:last .res')
 .append('<a class="title" target="_blank"
href="' + doc.url + '">')
 .append('<p class="description">')
 .append('<p class="address">');
 $(self.elm).find('.doc:last .title')
 .append('' + title + '');
 $(self.elm).find('.doc:last .description')
 .append('' + content + '');
 $(self.elm).find('.doc:last .address')
 .append('' +
AjaxFranceLabs.tinyUrl(doc.url) + '');
 });

AjaxFranceLabs.addMultiElementClasses($(this.elm).find('.doc'));
 if (this.pagination !== false) {
 this.pagination.afterRequest(data);
 }
 }
 }
 }));

 /* Lets simulate an empty search query in order to fill the results
when loading the page */
 /* The makeRequest method actually initializes the manager if this
has not been done before */
 Manager.makeRequest();

});

You should get the following result:

Now we have our search bar and the results displayed, why not adding the search informations like the number of
documents returned, the query execution time. Lets add the SearchInformation widget.

The html file

<!-- index.html - Adding a SearchInformation widget -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/main.css">
 <link rel="stylesheet" type="text/css" href="css/results.css">
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.
css">
 </head>
 <body>

 <script type="text/javascript"
src="js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript"

src="js/jquery-ui-1.8.23.min.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/uuid.core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/i18njs.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Parameter.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/ParameterStore.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractManager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/manager/Manager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractWidget.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchBar.widget.js"></script>
 <script type="text/javascript" src="js/main.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/Result.widget.js"></script>
 <!-- The SearchInformationWidget -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchInformation.widget.js"></script>
 <script type="text/javascript" src="js/searchTutorial.js"></script>
 <div id="solr">
 <div id="searchBar"></div>
 <div id="result_information"></div><!-- the widget will be
inserted here -->
 <div class="col left"></div>
 <div class="col right">
 <div id="results"></div>
 </div>
 <div class="clear"></div>

 </div>
 </body>
</html>

And the javascript file :

/* searchTutorial.js */
$(function($){

 Manager.addWidget(new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar'
 }));

 Manager.addWidget(new AjaxFranceLabs.ResultWidget({
 elm: $('#results'),
 id: 'documents',
 afterRequest : function() { /* implements the method displaying
the documents */
 var data = this.manager.response;
 $(this.elm).find('.doc_list').empty();
 if (data.response.numFound === 0) {
 $(this.elm).find('.doc_list').append('No document found.');
 } else {
 var self = this;
 $.each(data.response.docs, function(i, doc) {
 var title = (doc.title === undefined) ? doc.url :
doc.title;
 if(data.highlighting === undefined ||
(data.highlighting[doc.id].content_fr === undefined &&
data.highlighting[doc.id].content_en === undefined)){
 if(doc.content_fr)
 content = doc.content_fr;
 else
 content = doc.content_en;
 content = AjaxFranceLabs.truncate(content, 200)
 }
 else {
 if(data.highlighting[doc.id].content_fr)
 content =
data.highlighting[doc.id].content_fr;
 else
 content =
data.highlighting[doc.id].content_en;
 }
 $(self.elm).find('.doc_list').append('<div
class="doc e-' + i + '" doc_id="'+doc.id+'">');

 $(self.elm).find('.doc:last').append('<div
class="res">');
 $(self.elm).find('.doc:last .res')
 .append('<a class="title" target="_blank"
href="' + doc.url + '">')
 .append('<p class="description">')
 .append('<p class="address">');
 $(self.elm).find('.doc:last .title')
 .append('' + title + '');
 $(self.elm).find('.doc:last .description')
 .append('' + content + '');
 $(self.elm).find('.doc:last .address')
 .append('' +
AjaxFranceLabs.tinyUrl(doc.url) + '');
 });

AjaxFranceLabs.addMultiElementClasses($(this.elm).find('.doc'));
 if (this.pagination !== false) {
 this.pagination.afterRequest(data);
 }
 }
 }
 }));

 /* The SearchInformation widget */
 Manager.addWidget(new AjaxFranceLabs.SearchInformationWidget({
 elm: $('#result_information'),
 id: 'searchInformation'
 }));

 Manager.makeRequest();

});

You should get the following display:

For this part of the tutorial, we will continue by adding the pagination feature.

The html file:

<!-- index.html - Adding the pagination -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/main.css">
 <link rel="stylesheet" type="text/css" href="css/results.css">
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.
css">
 </head>
 <body>
 <script type="text/javascript"
src="js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript"
src="js/jquery-ui-1.8.23.min.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/uuid.core.js"></script>

 <script type="text/javascript"
src="js/AjaxFranceLabs/i18njs.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Parameter.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/ParameterStore.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractManager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/manager/Manager.js"></script>
 <!-- Add this class -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractModule.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractWidget.js"></script>
 <!-- Add this module -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/modules/Pager.module.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchBar.widget.js"></script>
 <script type="text/javascript" src="js/main.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/Result.widget.js"></script>
 <!-- The SearchInformationWidget -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchInformation.widget.js"></script>
 <script type="text/javascript" src="js/searchTutorial.js"></script>
 <div id="solr">
 <div id="searchBar"></div>
 <div id="result_information"></div> <!-- the widget will be
inserted here -->
 <div class="col left"></div>
 <div class="col right">
 <div id="results"></div>
 </div>
 <div class="clear"></div>
 </div>
 </body>

</html>

And the javascript file

/* searchTutorial.js */
$(function($){

Manager.addWidget(new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar'
}));
/* The result widget */
Manager.addWidget(new AjaxFranceLabs.ResultWidget({
 elm: $('#results'),
 id: 'documents',
 pagination : true, /* Add this */
 afterRequest : function() {
 var data = this.manager.response;
 $(this.elm).find('.doc_list').empty();
 if (data.response.numFound === 0) {
 $(this.elm).find('.doc_list').append('No document found.');
 } else {
 var self = this;
 $.each(data.response.docs, function(i, doc) {
 var title = (doc.title === undefined) ? doc.url :
doc.title;
 if(data.highlighting === undefined ||
(data.highlighting[doc.id].content_fr === undefined &&
data.highlighting[doc.id].content_en === undefined)){
 if(doc.content_fr)
 content = doc.content_fr;
 else
 content = doc.content_en;
 content = AjaxFranceLabs.truncate(content, 200)
 }
 else {
 if(data.highlighting[doc.id].content_fr)
 content = data.highlighting[doc.id].content_fr;
 else
 content = data.highlighting[doc.id].content_en;
 }
 $(self.elm).find('.doc_list').append('<div class="doc
e-' + i + '" doc_id="'+doc.id+'">');
 $(self.elm).find('.doc:last').append('<div
class="res">');
 $(self.elm).find('.doc:last .res')

 .append('<a class="title" target="_blank" href="' +
doc.url + '">')
 .append('<p class="description">')
 .append('<p class="address">');
 $(self.elm).find('.doc:last .title')
 .append('' + title + '');
 $(self.elm).find('.doc:last .description')
 .append('' + content + '');
 $(self.elm).find('.doc:last .address')
 .append('' + AjaxFranceLabs.tinyUrl(doc.url) +
'');
 });

AjaxFranceLabs.addMultiElementClasses($(this.elm).find('.doc'));
 if (this.pagination !== false) {
 this.pagination.afterRequest(data);
 }
 }
 }
}));

Manager.addWidget(new AjaxFranceLabs.SearchInformationWidget({
 elm: $('#result_information'),
 id: 'searchInformation'
}));

Manager.makeRequest();

});

You should get the following result:

Easy right? Regarding to the documentation, the pagination variable can take 3 values, true, false, a PagerWidget.
By default this value is set to true and will automaticaly create a PagerWidget with the default options. But, if you want to modify some methods or
values of the widget, you can create another one and assign it to the pagination variable.

The next thing we will do is including the autocomplete widget to the search bar.

The autocomplete widget is a direct extension of the autocomplete plugin from jQuery UI, so we will need to download it and include it to our
javascript files.

<!-- index.html - Adding the autocomplete functionnality -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/main.css">
 <link rel="stylesheet" type="text/css" href="css/results.css">
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.
css">
 </head>
 <body>

 <script type="text/javascript"
src="js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript"
src="js/jquery-ui-1.8.23.min.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/uuid.core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/i18njs.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Parameter.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/ParameterStore.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractManager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/manager/Manager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractModule.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractWidget.js"></script>
 <!-- Add this module -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/modules/Autocomplete.module.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/modules/Pager.module.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchBar.widget.js"></script>
 <script type="text/javascript" src="js/main.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/Result.widget.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchInformation.widget.js"></script>
 <script type="text/javascript" src="js/searchTutorial.js"></script>
 <div id="solr">
 <div id="searchBar"></div>
 <div id="result_information"></div><!-- the widget will be
inserted here -->
 <div class="col left"></div>
 <div class="col right">
 <div id="results"></div>
 </div>
 <div class="clear"></div>
 </div>
 </body>

</html>

And the javascript file

/* searchTutorial.js */
$(function($){

 Manager.addWidget(new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar',
 autocomplete : true //add this line for the autocompletion
 }));

 Manager.addWidget(new AjaxFranceLabs.ResultWidget({
 elm: $('#results'),
 id: 'documents',
 pagination : true,
 afterRequest : function() {
 var data = this.manager.response;
 $(this.elm).find('.doc_list').empty();
 if (data.response.numFound === 0) {
 $(this.elm).find('.doc_list').append('No document found.');
 } else {
 var self = this;
 $.each(data.response.docs, function(i, doc) {
 var title = (doc.title === undefined) ? doc.url :
doc.title;
 if(data.highlighting === undefined ||
(data.highlighting[doc.id].content_fr === undefined &&
data.highlighting[doc.id].content_en === undefined)){
 if(doc.content_fr)
 content = doc.content_fr;
 else
 content = doc.content_en;
 content = AjaxFranceLabs.truncate(content, 200)
 }
 else {
 if(data.highlighting[doc.id].content_fr)
 content =
data.highlighting[doc.id].content_fr;
 else
 content =
data.highlighting[doc.id].content_en;
 }
 $(self.elm).find('.doc_list').append('<div
class="doc e-' + i + '" doc_id="'+doc.id+'">');

 $(self.elm).find('.doc:last').append('<div
class="res">');
 $(self.elm).find('.doc:last .res')
 .append('<a class="title" target="_blank"
href="' + doc.url + '">')
 .append('<p class="description">')
 .append('<p class="address">');
 $(self.elm).find('.doc:last .title')
 .append('' + title + '');
 $(self.elm).find('.doc:last .description')
 .append('' + content + '');
 $(self.elm).find('.doc:last .address')
 .append('' +
AjaxFranceLabs.tinyUrl(doc.url) + '');
 });

AjaxFranceLabs.addMultiElementClasses($(this.elm).find('.doc'));
 if (this.pagination !== false) {
 this.pagination.afterRequest(data);
 }
 }
 }
 }));

 Manager.addWidget(new AjaxFranceLabs.SearchInformationWidget({
 elm: $('#result_information'),
 id: 'searchInformation'
 }));

 Manager.makeRequest();

});

You should get the following:

Easy right? Regarding to the documentation, the pagination variable can take 3 values, true, false, a PagerWidget.
By default this value is set to true and will automaticaly create a PagerWidget with the default options. But, if you want to modify some methods or
values of the widget, you can create another one and assign it to the pagination variable.

Lets go a bit further now and add faceting.

The html file

<!-- index.html - Adding some facets -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="css/main.css">
 <link rel="stylesheet" type="text/css" href="css/results.css">
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.
css">
 </head>
 <body>

 <script type="text/javascript"
src="js/jquery-1.8.1.min.js"></script>

 <script type="text/javascript"
src="js/jquery-ui-1.8.23.min.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/uuid.core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/i18njs.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Core.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/Parameter.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/ParameterStore.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractManager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/manager/Manager.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractModule.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractWidget.js"></script>
 <!-- Add this class which our widget extends -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/core/AbstractFacetWidget.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/modules/Autocomplete.module.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/modules/Pager.module.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchBar.widget.js"></script>
 <script type="text/javascript" src="js/main.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/Result.widget.js"></script>
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/SearchInformation.widget.js"></script>
 <!-- Add this widget -->
 <script type="text/javascript"
src="js/AjaxFranceLabs/widgets/Table.widget.js"></script>
 <script type="text/javascript" src="js/searchTutorial.js"></script>
 <div id="solr">
 <div id="searchBar"></div>
 <div id="result_information"></div>
 <div class="col left">
 <!-- Add this block -->
 <div id="facets">
 <div id="facet_langue"></div><!-- First widget -->
 <div id="facet_source"></div><!-- Second widget -->
 </div>
 </div>
 <div class="col right">
 <div id="results"></div>

 </div>
 <div class="clear"></div>
 </div>
 </body>

</html>

And the javascript file:

/* searchTutorial.js */
$(function($){

 Manager.addWidget(new AjaxFranceLabs.SearchBarWidget({
 elm: $('#searchBar'),
 id: 'searchBar',
 autocomplete : true //add this line for the autocompletion
 }));

 Manager.addWidget(new AjaxFranceLabs.ResultWidget({
 elm: $('#results'),
 id: 'documents',
 pagination : true,
 afterRequest : function() {
 var data = this.manager.response;
 $(this.elm).find('.doc_list').empty();
 if (data.response.numFound === 0) {
 $(this.elm).find('.doc_list').append('No document found.');
 } else {
 var self = this;
 $.each(data.response.docs, function(i, doc) {
 var title = (doc.title === undefined) ? doc.url :
doc.title;
 if(data.highlighting === undefined ||
(data.highlighting[doc.id].content_fr === undefined &&
data.highlighting[doc.id].content_en === undefined)){
 if(doc.content_fr)
 content = doc.content_fr;
 else
 content = doc.content_en;
 content = AjaxFranceLabs.truncate(content, 200)
 }
 else {
 if(data.highlighting[doc.id].content_fr)
 content =
data.highlighting[doc.id].content_fr;
 else
 content =
data.highlighting[doc.id].content_en;
 }
 $(self.elm).find('.doc_list').append('<div
class="doc e-' + i + '" doc_id="'+doc.id+'">');

 $(self.elm).find('.doc:last').append('<div
class="res">');
 $(self.elm).find('.doc:last .res')
 .append('<a class="title" target="_blank"
href="' + doc.url + '">')
 .append('<p class="description">')
 .append('<p class="address">');
 $(self.elm).find('.doc:last .title')
 .append('' + title + '');
 $(self.elm).find('.doc:last .description')
 .append('' + content + '');
 $(self.elm).find('.doc:last .address')
 .append('' +
AjaxFranceLabs.tinyUrl(doc.url) + '');
 });

AjaxFranceLabs.addMultiElementClasses($(this.elm).find('.doc'));
 if (this.pagination !== false) {
 this.pagination.afterRequest(data);
 }
 }
 }
 }));

 Manager.addWidget(new AjaxFranceLabs.SearchInformationWidget({
 elm: $('#result_information'),
 id: 'searchInformation'
 }));

 Manager.addWidget(new AjaxFranceLabs.TableWidget({
 elm : $('#facet_langue'),
 id : 'facet_langue',
 field : 'language',
 name : window.i18n.msgStore['language'],
 pagination : true,
 selectionType : 'OR',
 returnUnselectedFacetValues : true
 }));

Manager.addWidget(new AjaxFranceLabs.TableWidget({
 elm : $('#facet_source'),
 id : 'facet_source',
 field : 'source',
 name : window.i18n.msgStore['source'],
 pagination : true,
 selectionType : 'OR',
 returnUnselectedFacetValues : true
 }));

 Manager.makeRequest();

});

You should get the following:

Widgets and Modules

SearchBar widget

A widget displaying a search bar and search options.

It contains a link useful to switch to advanced search (if that widget is activated): : in this case a default query is performed and the inputs and
URL reset.

Variables

autocomplete: can take 3 values:
false(default): no autocomplete.
true: autocomplete automaticaly created.
AutocomepleteWidget: an autocomplete widget.

autocompleteOptions: options for the autocomplete widget if autocomplete set to true. Check the code to see the default structure.
removeContentButton: if set to true, creates a button which appears when there is text in the search bar in order to remove it and
execute a request (default: false).
noRequest: if true, inhibits the request to be sent to Solr (default: false).
updateBrowserAddressBar: if true, the address bar URL is updated with the query parameter,
e.g. ?searchType=AllWords&query=datafari (default: true).
removeContentButton: if true, adds a button that clears the search bar (default: false).

Methods

 buildWidget: an implementation of the parent class method. It contains the onClick event handler for the advanced search link.
beforeRequest: an implementation of the parent class method.

afterRequest: an implementation of the parent class method; closes the autocomplete menu.
reset: an implementation of the parent class method: it resets the inputs of the widget (useful when switching between basic and
advanced search).
updateAddressBar: updates the address bar URL with the search term, e.g. ?searchType=AllWords&query=datafari
clean: resets the pagination and the fq and start parameters of the manager's store.
makeRequest: if the noRequest variable is false, cleans the results area and facets, updates the address bar and performs the search
request.

Note that the Autocomplete widget is also an extension of the and so it has all its variables and methods too.Autocomplete plugin from jQuery UI

Result widget

A widget displaying the search result.

Variables

pagination: can take 3 values
false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

 SubClassResult widget

A widget that implements Datafari specific code and parameters the Result widget. We did not test this widget towards a direct Solr system. This
widget displays the search result. It displays results differently depending on the activation of the LikesAndFavorites widget.

Variables

pagination: can take 3 values
false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

elmSelector: used to store the results to be displayed. Corresponds to the jQuery selector.
: used in the mobile mode, to know when we reach the bottom of the page, to trigger the spinner in order to load andfirstTimeWayPoint

display the further results.
: checks whether we are in mobile mode or not.isMobile

mutex_locked : is a variable used as a mutex for the mobile mode

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

ResultIllustrated widget

A widget that extend Result Widget and that displays image in result.

Variables

http://jqueryui.com/demos/autocomplete/

pagination: can take 3 values
false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

LikesAndFavorites Widget

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
function that is runned after getting the likes and favorites of the user
showError: function that analyze the error and display the corresponding error message

SearchInformation widget

A widget displaying the search informations like the number of document found, the query execution time, ...

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

Table widget

A widget displaying a facet values in a table.

Variables

name: a name for the facet to be displayed.
pagination: can take 3 values:

false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

nbElmToDisplay: the number of facets to display (default: 10).
sort: can take 3 values

occurences(default): sort the facets by the number of occurences.
AtoZ: sort the facets name by alphabetical order.
ZtoA: sort the facets name in a reversed akphabetical order.

maxDisplay: maximum number of facets (default: 40).
checkedOnTop: if set to true, the checked facets will be sorted on the top before the unchecked facets (default: true).
mappingValues (optional): used to override the values of the facet by custom ones. This variable has to be initialized in the constructor
call (search.js) and respect the following format : {originalFacetValue1 : customValue1, originalFacetValue2 : customValue2, ... }

All the possible facet values don't have to be mapped to custom ones, you can fill this optional variable with the only needed ones, the
other values will stay the same.

Methods

buildWidget: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
update: a method updating the content of the widget.
assocTags: a method maping the search query facets result.
sortBy: the method sorting the facets, takes the sort mode as parameter.
clickHandler: a callback called when a facet is selected or unslected.

FacetDuplicates widget :

This widget displays duplicate documents that are in the index. It is very specific, not recommended for instance if you have an ecommerce
website. It is more useful in an intranet context, where you may be interested to know which documents are present several times in your
repositories.

The class is of type « final ». For each hash of a given document, the widget retrieves the corresponding document name (the corresponding
field name for the document name needs to be identified. By default in Datafari, it is). For more information, refer to the specifictitle_en or title_fr
deduplication documentation.

Variables

name: a name for the facet to be displayed.
pagination: can take 3 values:

false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

nbElmToDisplay: the number of facets to display (default: 10).
sort: can take 3 values

occurences(default): sort the facets by the number of occurences.
AtoZ: sort the facets name by alphabetical order.
ZtoA: sort the facets name in a reversed akphabetical order.

maxDisplay: maximum number of facets (default: 40).
checkedOnTop: if set to true, the checked facets will be sorted on the top before the unchecked facets (default: true).

Methods

buildWidget: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
update: sends an ajax request for each hash to get the name of the document. It will also build the html that will be used to display the
facet. If there is no duplicate document, the facet will not be displayed.
assocTags: a method maping the search query facets result.
sortBy: the method sorting the facets, takes the sort mode as parameter.
clickHandler: a callback called when a facet is selected or unslected.

HierarchicalFacet widget

A widget displaying a facet values in a hierarchical way. Available as of Datafari v2.2.

Prerequisites

In order to make this widget work, it is mandatory that the selected facet field represents a path tokenization where each value is prefixed by its

depth level.
For example, the path '/home/france/labs' will be tokenized as this : 0/home, 1/home/france, 2/home/france/labs

Variables

name: a name for the facet to be displayed.
pagination: can take 3 values:

false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

nbElmToDisplay: the number of facets to display (default: 10).
sort: can take 3 values

occurences(default): sort the facets by the number of occurences.
AtoZ: sort the facets name by alphabetical order.
ZtoA: sort the facets name in a reversed akphabetical order.

maxDisplay: maximum number of facets (default: 40).
checkedOnTop: if set to true, the checked facets will be sorted on the top above the unchecked facets (default: true).
rootLevel: the root depth level of the hierarchical tree (default: 0)
maxDepth: the maximum depth to be displayed, starting from the rootLevel (default: 3)
separator: the separator used between each depth level (default '/')

Methods

buildWidget: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
update: a method updating the content of the widget.
assocTags: a method mapping the search query facets result.
sortBy: the method sorting the facets, takes the sort mode as parameter.
clickHandler: a callback called when a facet is selected or unslected.
selectNoRequest: a method that does the same as the selectHandler parent class method but that doesn't perform the request at the
end
unselectNoRequest: a method that does the same as the unselectHandler parent class method but that doesn't perform the request at
the end
displayLevel: a method which constructs the hierarchy tree with the search query facets result

PrevisualizeResult widget

A widget that extend Result Widget and that displays a preview window at mousover on the document.

Prerequisites

In order to make this widget work, you have to customize the content that you want in the window and to activate the widget.

To activate the widget :

in datafari/WebContent/js/search.js :

Uncomment the line :

Manager.addWidget(new AjaxFranceLabs.PrevisualizeResultWidget());

in datafari/WebContent/searchView.jsp

Uncomment the lines :

<script
type="text/javascript" src="js/AjaxFranceLabs/widgets/PrevisualizeResult
.widget.js" charset="utf-8"></script>

and

<div id="previsualize"></div>

To customize the information displayed :

Go to datafari/WebContent/js/AjaxFranceLabs/widgets/PrevisualizeResult.widget.js and edit the line to display whatever you want instead of the
ID of the document :

$($('.doc_list .previsualizetemplate')[index]).append('<div
id="previsualizeid">ID : '+docs[index].id+' </div>');

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
showError: function that analyze the error and display the corresponding error message

ExternalResult widget

A widget that allows to have a federated search in Datafari ie display results from another search engine (Solr, Sharepoint for example) and
display below the normal results from Datafari.

Prerequisites

In order to make this widget work, you have to parse the response from your external datasource.

To activate the widget :

in datafari/WebContent/js/search.js :

Uncomment the line :

Manager.addWidget(new AjaxFranceLabs.ExternalResultWidget());

in datafari/WebContent/searchView.jsp

Uncomment the lines :

<script
type="text/javascript" src="js/AjaxFranceLabs/widgets/ExternalResult.wid
get.js" charset="utf-8"></script>

and

<div id="external"></div>

to select the data to parse :

in datafari/WebContent/js/AjaxFranceLabs/widgets/ExternalResult.widget.js

Edit the line :

var urldatasource = 'http://localhost:8080/Datafari/externaldata.json';

Change the url for the data you want to parse. And adapt the code below to parse the info you want.

We provide some example data into Datafari if you want to test it out of the box :

Copy datafari/dev-tools/example-data/externaldata.json into datafari/WebContent

Methods

buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
showError: function that analyze the error and display the corresponding error message

Table Facet Queries widget

A widget displaying facet queries in a table.

Variables

name: a name for the facet to be displayed.
field: the field that will be used in the queries
queries: the list of queries
pagination: can take 3 values:

false(default): no pagination.
true: pagination automaticaly created.
PagerWidget: a pager widget.

nbElmToDisplay: the number of facets to display (default: 10).
maxDisplay: maximum number of facets (default: 40).

Spellcheck widget

A widget spellchecking a query string. (eg: can offer you to correct constelli in constelli).a o

This widget works with both basic and advanced search.

Note: this requires enabling a spellchecker component in the searchhandler of Solr (done in the xml config files), whether you use a pure Solr or a
Constellio Solr.

Variables

There are no specific variables: only the ones inherited from AjaxFranceLabs.AbstractWidget.

Methods

buildWidget: an implementation of the parent class method: builds the widget.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method: here there is the logic of the spellchecker itself. It checks whether the result
of the search query has some suggestions and, if so, it calls doSpellCheckerQuery to perform a new search with the spellchecked input,
contained in the collations array.
doSpellcheckerQuery: performs a new search with the spellchecked input.

AdvancedSearch widget

A widget enabling you to specify on which fields to perform a search.

The result of the search query is spellchecked by SpellChecker widget (if that widget is activated).

It contains a link useful to switch to basic search (if that widget is activated): in this case a default query is performed and the inputs and URL
reset.

By default the AdvancedSearch is desactivated from the splash page.

The AdvancedSearch widget is built with 2 other classes:

AdvancedSearchTable: which is a part of the advanced search form, containing fields.
AdvancedSearchField: which are the different fields provided by the advanced search.

Variables

tables: an array containing all the tables.
resizable: if set to true, display a resize bar on the bottom of the advanced search form. Requires jQuery UI Resizable plugin.
options: options given to the .jQuery UI Resizable plugin
optionsExtend: if set to true, extends the default parameters defined in this widget (default: true).

Methods

buildWidget: an implementation of the parent class method: builds the widget and links the basic search link to the basic search bar.
beforeRequest: an implementation of the parent class method: builds the search query with the inputs from AdvancedSearchFields and
calls updateAddressBar.
addTable: adds the AdvancedSearchTable object given in parameter to the table array.
reset: an implementation of the parent class method: resets the inputs of the widget and calls the reset method on the underlying
elements table and fields (useful when switching between basic and advanced search).
makeRequest: cleans the results area (list and facets) and performs a default search (*:*)
cleanResults: cleans the results area (list and facets)
updateAddressBar: updates the URL in the address bar with the advanced search query created by beforeRequest.

AdvancedSearchTable

Extends AjaxFranceLabs.Class

Variables

parent: the advancedSearch DOM element.
elm: the AdvancedSearchTable DOM element itself.
title: a name for the table (default: empty string).
description: a description for the table (default: empty string).
fieldStore: an array containing the AdvancedSearchField fields related to the table.
manager: a reference to the widget's manager.

Methods

init: an init method that creates the class.
addField: a method adding an AdvancedSearchField field to the fieldStore array.
reset: an implementation of the parent class method: resets the inputs of this class and calls the reset method on the underlying fields.

AdvancedSearchField

Extends AjaxFranceLabs.Class

Variables

parent: the advancedSearchTable DOM element.
elm: the AdvancedSearchField DOM element itself.
label: a name for the field (default: empty string).
range: if set to true, will create two inputs instead of one to enable an input range (default: false).
description: a description for the field (default: empty string).

http://jqueryui.com/demos/resizable/

multiInput: if set to true, will add a link which allows the user to add more inputs for this field (default: false).
addInputLabel: text to append to the link adding inputs (default: "Add input").
autocomplete: can take 3 values:

false(default): no autocomplete.
true: autocomplete automaticaly created.
AutocomepleteWidget: an autocomplete widget.

autocompleteOptions: options for the autocomplete widget if autocomplete set to true. Check the code to see the default structure.
manager: a reference to the widget's manager.
filter: if set to true, the widget will add the content of the field to a fq parameter instead of appending it to the q parameter (default: false).
field: the field in the search engine index this AdvancedSearchField refers to.

Methods

init: an init method, that creates the class.
getValue: a method returning the value of this field, after call to buildSearchTerm method.
reset: an implementation of the parent class method: resets the inputs of this class.
buildSearchTerm: expands the field's search term with the available languages:
e.g. content:giovanni becomes ((content_en:giovanni) OR (content_it:giovanni))

Information about dynamic query composition:

Since on Solr side we store the title and content on separated fields based on the detected language, the query in input is then translated into the
logic OR between the Solr fields that are functionally the same thus having language specialization:
E.g.: content:datafari => (content_fr:datafari) OR (content_en:datafari) OR (content_it:datafari) OR (...).

Then every "expanded" logical term is composed with the other "expanded" search terms by means of the radio buttons.

Please note that the query expansion based on languages is dynamic and it's based on the available languages array in i18n variable.

How to add a new field:

You need create a new field object and add it to the table object, as follows:
in createAdvancedSearchTable function of both search.js

// Table is already created

var ast = new new AjaxFranceLabs.AdvancedSearchTable({ ... });

// Add your field NEW_FIELD

var asf = new AjaxFranceLabs.AdvancedSearchField({
 parent : '#advancedSearchTable',
 label : window.i18n.msgStore['advancedSearch-NEW_FIELD-label'],
 description : window.i18n.msgStore['advancedSearch-NEW_FIELD-descr'],
 field : 'NEW_SOLR_FIELD'
 });

ast.addField(asf);

Add new field to advanced search

Menu widget

A widget building a dropdown menu.

Variables

name: the parent element text to display.
menuItems: a collection of the elements to add to the menu ({name: ..., link: ...}).

Methods

buildWidget: an implementation of the parent class method.

Slider widget (beta)

A widget that will help you to select values as range or min/max for a chosen field.

This widget uses the .jQuery UI Slider plugin

Variables

name: String - name of the widget that will appear as the title in the search view
field: String - the field name in the Solr core that will be used by the widget
fieldType: String - the type of the chosen field. Only two values are accepted by the widget, 'date' and 'numeric'. (notice that the
lowercases matter)
elm: String - the id of the div in the search view that will contain the widget
range: Boolean - set to true if you want a slider with a range, false otherwise
min: Integer - the minimum value of the slider (also used as the default minimum value if the range slider has been selected). Can be
negative
max: Interger - the maximum value of the slider (also used as the default maximum value if the range slider has been selected). Can be
negative
unit: String - this field is only used when the fieldType has been set to 'date'. In that case you have three options 'YEAR', 'MONTH' or
'DAY'. When a date field type is used with this widget, the resulting Solr query filter that will be applied by the widget will be
"(field):[NOW(+/-)(slider_value)(unit)]. So keep in mind that the slider will be based on the current date to create the query. For now we
didn't have implemented a parameter to change this behavior
defaultValue: Integer - only used when the slider is not in the 'range mode'. Default value when the widget is loaded for the first time
step: Integer - defines the number which represents the minimum step performed when the user slide
comparator: String - only used when the widget is not in the 'range mode'. Two possible values, 'greater' or 'less' (lowercases matter).
When the widget is not in the 'range mode' you have the choice to define if the chosen field value must be greater than or less than the
selected one in the slider. For now we didn't have implemented the 'equal' comparator.

Methods

buildWidget: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

Suggest widget

A widget creating a result widget that proposes other suggested documents to your search query. The name may be misleading, this is not the
suggest module for an autocomplete, it is rather for a "more like this" behavior.

Variables

boots: a list of boosts to apply. { field1: boost_value1, field2: boost_value2, ... }.
resultWidget: the result widget which will contain the suggestions, internal use.

http://jqueryui.com/demos/slider/

Methods

init: an implementation of the parent class method.
buildWidget: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

OntologySuggestion widget

A widget creating a result widget that proposes the most popular parent and child label of all the results. The name may be misleading, this is not
the suggest module for an autocomplete, it is rather for a "related subjects" behavior.

Prerequisites

In order to make this widget work, it is mandatory that the parameter of the 'datafari.properties' file is set to true, as theontologyEnabled
documents (at least a few of them) in the results have been enriched by the OntologyUpdateProcessor

Variables

parentLabelsField: the field in your schema that contains the parent documents labels of the ontology
childLabelsField: the field in your schema that contains the child documents labels of the ontology
useLanguage: (boolean) should use the Datafari selected language for both parentLabelsField and childLabelsField ? If , be sure thattrue
you used the with the parameter set to during the crawl of the documents by MCFOntologyUpdateProcessor userLanguages true

Methods

init: an implementation of the parent class method.
buildWidget: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

Pager module

A module creating a pagination.

Variables

source: the source elements to apply the pagination on. Optional if the elements are retrieved by an Ajax request.
prevLabel: the content of the previous nav button (default: <).
nextLabel: the content of the next nav button (default: >).
firstLabel: the content of the first nav button (default: <<).
lastLabel: the content of the last nav button (default: >>).
nbElmToDisplay: the number of elements to display (default: 10).
nbPage: the number of pages, internal use.
nbPageDisplayed: the number of pages to display in the navigation bar.
nbElements: the number of elements in source, internal use.
fastNavigationAlwaysVisible: if set to true, will always display the navigation button even if they are useless (eg: first and previous
button when you are on the first page. Default: false).
display: the css display value of the pagination elements.
pageSelected: the page actually selected (default: 0).

Methods

init: an implementation of the parent class method.
updatePages: the method updating the navigation bar (eg: elements to display)
clickHandler: a callback function called when a click on an element of the navigation is detected.
updateList: a method always called when a click on an element of the navigation is detected. This method is empty by default and must
be implemented if you need it.

Autocomplete module

This module creates a list of suggestions when you type in an input field. Note: this requires enabling a suggest component as a requesthandler
of Solr (done in the xml config files), in case you use a pure Solr. If you are using Constellio, this config is normally already activated in its Solr.
For Constellio 1.3, it also requires a modification of the web service servlet in order to reach the Constellio autocomplete service. Contact us if you
need help.

This module is also an extension of the and also has all its parameters and methods.jQuery UI Autocomplete plugin

Variables

options: options given to the .jQuery UI Autocomplete plugin
optionsExtend: if set to true, extends the default parameters defined in this module (default: true).
render: an empty variable. You can define it a function changing the way an element is rendering in the autocomplete.
field: if the values retrived must be focused on a specific field of your search engine index. Note that this option will not work with a
standard 1.3 Constellio. It requires a modification of its web service. This field variable becomes the variable "f" in the generated query to
the server
openOnFieldFocus: if set to true, executes a request to retrieve data when cursor entering the input field (default: false).
valueSelectFormat: a function that format the data selected in the autocomplete results (eg: if you want to put it between double
quotes).
singleValue: if set to true, when a value is choson in the autocomplete result, the actual value in the input field will be replaced by the
selected one.
searchForItSelf: if set to true, also search the term itself (default: false). This means that the list will contain the word currently typed in
addition to the words which have at least one more letter

Methods

init: an implementation of the parent class method.

Collection widget

A widget displaying your constellio's collections. Obviously, this widget works only for Constellio. Note that this requires that your manager was
initialised with the array of Constellio collections. See for that. Note also that it requires a modification of theAbstractManager.collections
Constellio 1.3 web service servlet. Contact us to know what to modify.

Methods

buildWidget: an implementation of the parent class method.

Capsule widget

A widget that gives you tips about your search. Does not work for Solr. Note that this only works for Constellio 1.3, with a modified web service in
order to support the request.

Methods

http://jqueryui.com/demos/autocomplete/
http://jqueryui.com/demos/autocomplete/
http://www.francelabs.com/EN/AjaxFranceLabs/documentation#AbstractManager

init: an implementation of the parent class method.
buildWidget: an implementation of the parent class method.
beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.

Favorite documents and searches

A module adding the possibility to create a favorite system on your searches and documents. Does not work for Solr. Note that this only works for
Constellio 1.3, with a modified web service in order to support the request.

Variables

userId: the id of the user manipulating its favorites. This is actually optional if your server is managing the user sessions.

Methods

beforeRequest: an implementation of the parent class method.
afterRequest: an implementation of the parent class method.
removeFavoriteDocument: takes as parameter the id of the favorite document and a callback method.
removeFavoriteSearch: takes as parameter the id of the favorite search and a callback method.
removeSearchInHistory: takes as parameter the id of the search to remove in the history and a callback method.
getFavoriteDocuments: takes as parameter a callback function, the first element to start on and the number of elements to retrieve.
getFavoriteSearches: takes as parameter a callback function, the first element to start on and the number of elements to retrieve.
getSearchHistory: takes as parameter a callback function, the first element to start on and the number of elements to retrieve.

LoginDatafariFormWidget

The widget containing the login to admin UI form.

The code of this widget has been migrated from embedded JS of login.jsp to a separate widget.

Variables

No specific variables for this widget, only the ones inherited from AjaxFranceLabs.AbstractWidget.

Methods

buildWidget: an implementation of the parent class method. Creates the widget.
JQuery anonymous function $(function($) {...}: adds the widget to the manager.

LoginDatafariLinksWidget

The widget containing the login to admin UI form.

The code of this widget has been migrated from embedded JS of index.jsp to a separate widget.

Variables

No specific variables for this widget, only the ones inherited from AjaxFranceLabs.AbstractWidget.

Methods

buildWidget: an implementation of the parent class method. Creates the widget.

LanguageSelectorWidget

This widget enables the user to change the language of the UI, among the available ones.

When a language change is detected by the application, it gets reset and a new splash page is displayed.

To add a language, you need to add an option in the combo box (option DOM element of buildWidget).

Variables

No specific variables for this widget, only the ones inherited from AjaxFranceLabs.AbstractWidget.

Methods

buildWidget: an implementation of the parent class method. Creates the widget.

Add custom fields in Datafari and display them

Let's say we want to add a new metadata field in Solr named meta:author in the source and named in Datafari. authorname
Let's see each step to display the field into the Datafari UI and permit to search into the field with Solr.

1) Edit solrconfig.xml

We want to map the original metadata of the source file : to a new Solr field named authorname. So we have to edit the Solr cellmeta:author
request handler :

<requestHandler name="/update/extract"
 startup="lazy"
 class="solr.extraction.ExtractingRequestHandler" >
<lst name="defaults">
 <str name="scan">false</str>
 <str name="captureAttr">true</str>
 <str name="lowernames">true</str>
 <str name="fmap.language">ignored_</str>
 <str name="fmap.meta_author">authorname</str>
 <str name="fmap.source">ignored_</str>
 <str name="uprefix">ignored_</str>
 <str name="update.chain">datafari</str>
 <bool name="ignoreTikaException">true</bool>

The correct syntax is meta_author (and not meta:author) because of the line
 <str name="lowernames">true</str>

The says : "lowernames=true|false - Map all field names to lowercase with underscores"documentation

You can also see in the configuration that we store all the ignored metadata in the dynamic field ignored. I invite you to change the configuration
of the field in the schema.xml and to change stored=false to store=true to see all the metadata found by Tika (and to see the correct syntax to
map the fields into Solr) For example :

https://wiki.apache.org/solr/ExtractingRequestHandler

2) Edit schema.xml

We want now to add the new field into the Solr schema. So add the following line :

<field name="authorname" type="text_en" indexed="true" stored="true" multiValued="true"/>

Ok so far we can launch the indexation with ManifoldCF and the new field is well present in Solr.

3) Add the new field to the search Edit solrconfig.xml, in the select request handler add the field :

<str name="qf">author title_en^50 title_fr^50 content_fr^10 content_en^10 source^20 extension^20
 </str>

After the core reloads, we can now search and find the data of the new field.

4) Configure the Datafari UI into datafari/tomcat/webapps/Datafari/js/main.js (source code) or Datafari/tomcat/webapps/Datafari/js/main.js
(installed version) Change the line :

Manager.store.addByValue("fl", 'title,url,id,extension');

And add the field you want to add, here autorname

Manager.store.addByValue("fl", 'title,url,id,extension, authorname');

The last step is to change the Javascript file search.js : datafari/WebContent/js/search.js (source code) or
Datafari/tomcat/webapps/Datafari\js/search.js (installed version) Add the display of your field adding the code : doc.subject where you want to add
it. For example if you want to add it after the URL of the document : (I made a mistake in my previous answer, it is correct now)

elm.find('.doc:last .address').append('' + AjaxFranceLabs.tinyUrl(decodeURIComponent(url)) +
'')
elm.find('.doc:last .address').append('<div id="author">' + doc.author);

And finally your Datafari UI should be like that with the field author at the end of each document :

Alerts - Architecture and mechanism

The alerts are stored in a local Apache Cassandra. You can create, edit or delete them from the page which communicates with the alerts.html Al
 servlet. This servlet creates a connection towards the database with the info contained in the file.erts alerts.properties

An alert is composed of seven fields:

an created by the Cassandra,_id
a which will be used to make the request on the solr core,keyword
the on which the query will be made, default : FileShare,core
a : Hourly, Daily or Weekly. Frequency changes the time lapse between two requests but also the recency of the documentsfrequency
returned.
a to which the results (if any) of the query will be sent,mail
a which describes the subject of the emailsubject
a : the one who created the alert in the UI. It is only used for now to allow for the monitoring of the alerts by the admin and the searchuser
expert.

The UI and servlet are used to modify the file. It is used to:alertsAdmin alerts.properties

configure the initial delay of the execution of the alerts of a specific frequency,
print the date of the previous execution
print the date of the next planned executions.

 For the moment, the alerts cannot be used on plain text files, as Tika cannot extract any metadata like the modification date from
them.

configure the mail address from which Datafari will send its emails.
configure the host and port of the Cassandra and the name of the Database and of the collection where the alerts are.

The class is a Singleton and is called at each start/stop of the server by the .AlertsManager StartAlertsListener

At each start it reads the file to fill its own fields, and check if the alerts were on or off at the end of the previous execution ofalerts.properties
Datafari. If it was on On, the alerts Manager schedules the task according to the dates in the file. However if those are invalid, it will calculate the
delays according to the original execution schedule of the alerts.

For instance the hourly alerts are set to begin at midnight, if everything is going smoothly, the hourly alerts will run at 00:00 then at 01:00 and so
on. Now let's say that the date was already past at the start of Datafari. Then the AlertsManager will plan the execution for the next expected
hour.

This allows the alerts to be run regularly, even after one or more restart of the server.

In order to run an alert:

the creates a connection with the Cassandra database at each executionAlertsManager
the then retrieves all the alerts with the matching frequency.AlertsManager
For each alert, the creates an Alert object, and delegates the execution to them.AlertsManager
An object alert will use its attributes to make a solrQuery
If the solrQuery contains results, it will use the email object passed at its creation to send a mail. To avoid re reading of the alerts.properti

file for each alerts, this object is initialized in the alerts manager and passed as a parameter to the Alert constructor. If thees
configuration file is modified through the admin UI, Datafari will automatically restart the alerts, if it is manually modified, you will need to
turnOff/turnOn the alerts in the alertAdmin UI to take into account the modifications.

Alerts - technical doc (from 3.1)
The version 3.1.x of Datafari introduces a new way to create, consult and modify alerts.

The schema is wrong concerning the Datafari.properties file and mail.txt file, both files are no more used by the AlertsManager and they
have been replaced by one configuration file named alerts.properties located in Datafari_Home/tomcat/conf

More info on our code?
Please refer to our code in github, as our source code contains additional technical details avaiable as comments

The creation of an alert is now implemented by a widget embedded in the searchView. The widget javascript file is
WebContent/js/AjaxFranceLabs/widgets/CreateAlert.widget.js and it is instantiated in WebContent/js/search.js and imported as a script file in
WebContent/searchView.jsp.
A 'div' element with the id 'create_alert' has been added to the searchView.jsp file to be the container of the widget but is only added when an
authenticated user is detected.
The widget adds a 'Create alert' button to the UI which displays, when the user click on it, a text field to enter an e-mail address and a 'select'
element to choose the frequency of the alert. Once the user validate theses parameters, the widget sends them as a POST request, in addition
with the search query parameters, to the "/admin/Alerts" servlet (code located in src/main/java/com/francelabs/datafari/servlets/admin/Alerts.java).
Then the servlet insert everything in the "alerts" table of the Datafari database in Cassandra.

The management of the alerts is now implemented in the 'parameters' page and the javascript code is located in WebContent/js/parameters.js in
the createAlertContent() method.
The goal of this javascript code is to provide a table displaying all the alerts created by the authenticated user and provide a 'modify' button for
each of them to change the frequency (for now you cannot change the e-mail address), and a 'Delete' button.
Modify an alert will result in a POST request to the "admin/Alerts" servlet with the new frequency and all the other alert parameters as POST data.
Therefore, the behavior is the same than the CreateAlert widget.
Delete an alert will result in a POST request to the "admin/Alerts" servlet with only the alert id as POST data. The servlet detects that only an id
has been provide so it has to delete the corresponding entry in the database.

Architecture

Valid for V2.0

Datafari uses a typical search engine architecture. It is based on the triptych crawling, indexing and search. The crawling part is using Apache
ManifoldCF. There is another opensource connectors framework under Apache licence v2, the Google Connector Framework. Yet the latter is
only being supported and developed by Google, so it appeared more reasonable to us to leverage ManifoldCF, proposed by the Apache
foundation, and which benefits from the support of several committers from different entities.

The indexing and search parts both use Apache Solr. Again, there is another popular indexing and search engine available under Apache licence
V2. It is Elasticsearch, but similarly to the Google Connector Framework, it is led by the eponym entity, and as such does not guarantee such a
longevity as Apache Solr.

ManifoldCF, although being independent from Apache Solr, has the advantage of being conceived from the start as Solr’s connectors framework.
It is thus conceptually “naturally” connected to Apache Solr.

The figure below illustrates the system architecture that we are using for Datafari. Its v2 is becoming rather large in terms of components, so this
architecture is rather high level and intentionally avoids some connections and components for the sake of clarity.

.

Datafari 3.0

On Datafari 3.0 we chose to use directly SolrCloud and to isolate the different parts of our product that can be installed on different servers.

If your Solr index becomes very huge or if your nomber of users becomes too big, you can easily shard your index and/or replicate it with
SolrCloud.

Custom Solr configuration

Datafari allows you to add your own Solr configuration to the existing one, without modifying the original configuration files. To do so, both
solrconfig.xml and schema.xml files are including custom files that are organized by sections:

solrconfig.xml includes 4 custom files located in :{Datafari_Home}/solr/solr_home/FileShare/conf/customs_solrconfig

custom_libs.xml: Used to add new jar libraries that Solr should load. For exemple, to use the feature of Datafari, the Apacheontology
Jena lib directory will be added in this file
custom_request_handlers.xml: Used to add new request handlers
custom_search_components.xml: Used to add new searchComponents
custom_update_processors.xml: Used to add new updateProcessors. The updateProcessors that you will specify in this file will be
added to the 'datafari' updateRequestProcessorChain (refer to the solrconfig.xml)

schema.xml also includes 4 custom files located in :{Datafari_Home}/solr/solr_home/FileShare/conf/customs_schema

Note that if for some reason you need to modify directly the solrconfig.xml file or the schema.xml file, you can do it but we strongly
advise you not to do so. These files may change in future versions of Datafari and you will have to manually manage the conflict during
the update process.

custom_copyFields.xml: Used to add new copyFields to the FileShare core. An example on how to define custom copyField can be
found in custom_copyFields.xml.example
custom_dynamicFields.xml: Used to add new dynamicFields to the FileShareCore. An example on how to define custom dynamicField
can be found in custom_dynamicFields.xml.example
custom_fields.xml: Used to add new fields to the FileShare core. An example on how to define custom field can be found in custom_fie
lds.xml.example
custom_fieldTypes.xml: Used to add new fieldTypes to the FileShare core. An example on how to define custom field can be found in c
ustom_fieldTypes.xml.example

These files are not loaded automatically in the schema. To do that, you should use the script {Datafari_Home}/solr/solr_home/FileShare/conf/cust
to load the custom schemas information in Datafari through the schema API of Solr.oms_schema/addCustomSchemaInfo.sh

Deduplication : Technical note

The deduplication functionality is one of the functionalities that is simplified since Solr 1.4 and the above versions, as it proposes to enable it
through its config files. Datafari used this functionality to implement it and make it available in the front-side.

For the backend side, we have applied the wiki that is available here : .https://cwiki.apache.org/confluence/display/solr/De-Duplication
The hash we generate is stored in a solr field labelled . By default, the hash is computed on the solr field.signature content
we set the overwriteDupes parameter to false :

<bool name="overwriteDupes">false</bool>

in the . You can set it to true if you want the solrConfig.xml index to contain only one instance per set of duplicated documents. This is not
our goal here (we want to let the search admin the possibility to remove duplicates after the fact).
we have set the fields parameter of the to: solrConfig.xml

<str name="fields">content,content_en,content_fr</str>

so that the hash will take in consideration only the content of each document. You can change this parameter to put the fields you want,
for instance the title so that the hash will take into consideration the title.
The processors of the dedupe are in :

<updateRequestProcessorChain name="datafari">

We used also - for max precision - the MD5 Algorithm of solr for hashing. Still, you can always change it by changing the parameter:

<str name="signatureClass"> solr.processor.MD5Signature</str>

 in .solrConfig.xml

For the front-end, we want to expose duplicates using a facet:

For this, we have created a new class called FacetDuplicates and which is located in . This/datafari/WebContent/js/AjaxFranceLabs/widgets/
class inherits from and overloads the update methoTableWidget d. This was achieved due to the fact that duplication is a facet and so returns

Those 8 custom files contain by default an xml tag <to_remove/> This tag serves to pass the xml validity check of the file when Solr
loads it, and avoid exceptions that will crash Solr. When you fill those files with your needs, you should remove or comment this tag and
put it again when you remove everything from a file.

https://cwiki.apache.org/confluence/display/solr/De-Duplication

only the hashes and that we wanted to return the names of a document from the duplicated documents. So what happens is that we send for
every hash in the facet a get query. We have also set a mincount for the facet so we will show only duplicated file names in the facet which is not
the case when the mincount is equal to 0 (which is the default configuration). You can find in this link a short doc for the parameter mincount : http
s://cwiki.apache.org/confluence/display/solr/Faceting. We also make the facet disappear if it doesn't contain a duplicated document : a simple $('#
facet_signature').show/hide had done the trick.

ELK

The 2.2 version of Datafari comes with an Elasticsearch Logstash Kibana layout in order to bring customizable monitoring and analytic views on
Datafari.

Two new kind of logs are generated each in separate files, in order to be exploited in Kibana:

Statistics logs
Core Monitoring logs

The diagram below shows the flow between Datafari and Kibana:

As Datafari writes lines in the log files, Logstash, in near real time, catches each new line and insert it in the "statistic/logs" or the "monitoring/logs"
index of Elasticsearch, according to the log line comes from the "datafari.statistic.log" file, or the "datafari-monitoring.log".

The "logstash.conf" file which describe the path of the input log files and how to process the lines and insert them into Elasticsearch can be found
in the Logstash main repository. Refer to the Logstash documentation for a deep understanding on how it works.
You will also find the templates used for each Elastisearch index in the "templates" directory under the Logstash main directory. The files are
called "datafari-statistic-template.json" and "datafari-monitoring-template.json".

SECURITY WARNING
In the community version, ELK is not secured. This means that anyone that knows the url to access the dashboards, will see
everything. It is up to you to secure your ELK environment: some of your options can be to switch to the Datafari Enterprise edition, or
to do it yourself, or to disable ELK.

Feature only available from the v2.2 of Datafari

ELK configuration notes
By default, aside from Kibana, Elasticsearch and Logstash are automatically configured by Datafari on the first start, to fit with your
installation directory and be ready to run.
If for some reasons (like an architecture decision), you move one or more of these components to a different place than the installation
directory of Datafari, you must modify the ELK environment parameters located in]/elk/scripts/set-elk-env.sh and[DATAFARI_HOME
maybe also the]/elk/scripts/start-elk.sh and]/elk/scripts/stop-elk.sh scripts.[DATAFARI_HOME [DATAFARI_HOME

Furthermore, if you want to manage by yourself the instance of ELK you just need to set the ELKactivation property to "true" in [DATAF
]/tomcat/conf/datafari.properties and enter the correct Kibana URI in the ELK configuration page of the admin UIARI_HOME

In order to use the ELK layout, you need to configure it first !

https://cwiki.apache.org/confluence/display/solr/Faceting
https://cwiki.apache.org/confluence/display/solr/Faceting

1.

2.

Let's describe how the flows works for each kind of log:

Statistics logs
Thoses logs give informations about the queries and actions performed in Datafari by users. For each query or action, a log line is written
in the file, Logstash detects the new line, applies some filters (defined in the file), and inserts it as adatafari.statistic.log logstash.conf
document in the statistic/logs index of Elasticsearch.
As described in the page, an id is generated for each query (the actions related to a query, like clicking on a result, keepStatistics logs
the id of the query) by Datafari. This id is used as the document id in Elasticsearch. By doing this, one has the guarantee, in
Elasticsearch and then Kibana, to not have duplicates data for the same query/action.
So, if several lines in the log file are related to the same query/action, they will be inserted in the same document in Elasticsearch, which
consequently means that the document in Elasticsearch will correspond to the most recent log line. However, this does not mean that
informations are lost, because a log line contains the history of the query and his related actions.
Thanks to this flow, you can see what kind of charts you can create on the page.Usage Statistics

Core Monitoring logs
Those logs give informations on the content of the main Solr core of Datafari at a fixed rate. The default rate is once per hour and
currently can only be changed by modifying it in the code.
So, at each iteration, Datafari performs some queries on Solr, format the results and writes several logs lines in the datafari-monitoring.lo

. In near real time, Logstash detects the new lines, applies some filters (defined in the file), and inserts them asg file logstash.conf
documents in the index of Elasticsearch.monitoring/logs
As described in the page, a log line contains an id which is based on the facet value, the facet field and the timeCore Monitoring logs
event unity. This id is used as the document id in Elasticsearch.
The time event, which is "daily" by default, correspond to the unity that will be used to visualize data in Kibana. For example, with the
default "daily" unity, you will have one Elasticsearch document by facet value and field, by day. If you set the time event unity to "hourly"
you will have one Elasticsearch document by facet value and field by hour.
This means that as long as a new time event has not started, for each new log line related to a couple of facet value and field, only one
document will be created/updated. When a new time event starts, a new document is created/updated for the same couple of facet value
and field.

Concretely, a daily time event unit allows such Kibana visualizations:

2.

As you can see on the time based line chart on the left, which represents the document type distribution over the time, we only have one
dot per doc type per day, so, for the last 5 days, 5 values for each facet value of the face field "extension".
On the global doc type distribution pie chart on the right, one have the global distribution of document types in the Solr core. This chart is
not based on time unlike the other one, so, to be able to have a correct distribution view, one need to set the time frame of Kibana to the
time event unity evoked before : the current day
Notice that, as our monitoring log iterations are hourly (by default), our data are updated each hour without having more than one dot per
day in the time base line chart.

Now you have a better understanding on the time event unity that you can change in the code and his effect on Elasticsearch and the
visualization of data in Kibana. Up to you to set you own time event unity and adapt your visualizations in consequence.
You can find more example of time based charts and "normal" charts you can create thanks to this flow in the Content Analysis Over

 and pages.Time Content Analysis

Faceting

FacetConfig allows you to create custom facets, to delete them, or to modify their printing order.

The UI interacts with the fieldWeight and the facetconfig servlet:

fieldWeight reads the schema.xml,
facetconfig reads and writes the internationalisation file, the searchview.jsp and the search.js

At creation:

a request is made towards FieldWeight servlet to get the list of fields,
another request is made towards the facetConfig servlet to get all the existing servlets, removing them from the selection.
the submit button sends a post request to facet config, with all the facets. Those are differenciated between themselves by their
parameters. Both types of facets are added pretty much the same way, except in the modification of the search.js.

Note that adding a facet modifies four files : the searchview.jsp, the search.js, then en and fr.json. You need to modify or add a json file after you
have changed or added another language.

For query facets, the construction of the String added to the js is different, it includes every query that is filled, and if there is no query passed as
parameters then it ignores the request.

Manually adding facets to the Datafari UI

In this tutorial, we will see how to add a facet in the Datafari UI. The facet here will be a facet field, that means that the source of the faceting are
the different values of the Solr field.

Indexation
Add a metadata value in a MCF job
Field already added to the Datafari schema

Configure the Datafari User interface

Indexation

We distinguih two cases here :

you want to add some metadata from you ManifoldCF job
or you already modified your schema and you indexed a custom Solr field

Remark : in the tutorial we write the absolute path for Debian version wich starts by /opt/datafari but it is the same for Windows paths : just replace
the beginning of the path by your local installation of Datafari

Add a metadata value in a MCF job

In our example, let's say that we want to have a facet with the source of the ManifoldCF job. Here I want to index 2 websites with ManifoldCF :
francelabs.com and datafari.com. I want to propose to the users to have a facet with the origin of the document : francelabs.com or datafari.com.

Let's do this !

Add the custom field to the Solr schema

Edit custom_fields.xml located in /opt/datafari/solr/solr_home/FileShare/conf/customs_schema/custom_fields.xml and add your new field. It needs
to be at least indexed (not necessarily stored) and not tokenized so if I want to add the field named job, the configuration will be :

 <field name="job" type="string" indexed="true" stored="true"
multiValued="false"/>

Don't forget to save your changes into the file.

Reload the FileShare core for Solr to load your new schema

Go to the Datafari Admin User Interface (UI) then click on Search Engine Administration then on Solr Administration

Then click on Core Admin on the main window, check if FileShare is highlighted then click on the Reload button

The button is now green, it means that the new configuration is correctly loaded into Solr.

So now we can configure ManifoldCF. First thing is obviously to configure the repository connection and the job configuration.

I invite you to go to this section of the wiki if you are not familiar with this step : Crawling

Here we add a Web repository connection and then added a FranceLabswebsite job in which we configured the seeds tab with the url of the
France Labs website.

We did the same thing for Datafari website (seed: datafari.com) :

So for now we have our 2 ManifoldCF (MCF) jobs well configured. We need to indicate to ManifoldCF to add a particular metadata for
each job to distinguish the documents. In order to to that, we need to configure a Transformations connector.
Click on the right menu on List transformations connections in the Output sections.

Then add a name and click on the Type tab. Select Metadata adjuster on the dropdown list then click save.

Now go back to the job configuration. Click on List all jobs on the Jobs section. Then click on the edit link for the "FranceLabsWebsite"
job.

Go to the Connections tab and click on the dropdown select list in front of the Transformation line then select the new transformer freshly created.
Then click on the button named "Insert transformation before".

So you should have the following configuration :

New tabs appeared called Metadata, Move metadata and Add metadata. Click on Add metadata.
Into parameter name you have to write the same name that the field you configured above so in our case it is named job. For the
parameter value, I wrote FranceLabs.
Then click on save.

The global configuration of the FranceLabs job is this one now :

We do the same thing for the Datafari job, the parameter name is job too and the value is Datafari.

We can now launch the crawl job for the two jobs. Go to the Jobs section and click on "Status and Jobs management". Than click on
Start for the two jobs.

We have now to wait a little for some documents to be indexed.

We are going to check if all is OK in the Solr Administration interface. Click on Search engine administration then on Solr administration in
the right menu.

In the main window, select now FIleShare in the dropdown select list then click on Query in the tabs list below.

Then click on the blue button Execute Query : it will launch a default Solr query : we search anything on all the Solr corpus. We should obtain :

So we notice that in the fields list, we have the field job with the value FranceLabs. It is exactly what we expected : we have a new field with a
different value fo each job configured in MCF.

We can now configure the Datafari User Interface !

Field already added to the Datafari schema

If you have already modified your indexation code and added your metadata, you have to respect these requirements for the Solr field :

 <field name="job" type="string" indexed="true" stored="true" />

 The field needs to be indexed and not tokenized. You can now configure the Datafari User Interface.

Configure the Datafari User interface

Our field is correctly present in our Solr schema and the values are present for each document. We just now have to configure the faceting in the
Datafari UI.

We need to modify the search.js file in order to add the TableFacet widget, we also have to add the facet display in the searchView.jsp and finally
add the label of the facet in the i18n files : en.json and fr.json.

First, edit the file search.js into /opt/datafari/tomcat/webapps/Datafari/js, add the widget in the code :

Manager.addWidget(new AjaxFranceLabs.TableWidget({
elm : $('#facet_job'),
id : 'facet_job',
field : 'job',
name : window.i18n.msgStore['job'],
pagination : true,
selectionType : 'OR',
returnUnselectedFacetValues : true
}));

We need to have an unique identifier in elm and id, we choose to call it facet_job, in the field parameter we indicate job, for the name we put job.

The file seems like that :

Edit now the file searchView.jsp located in /opt/datafari/tomcat/webapps/Datafari

We add the facet element to display on the page.We add it on the div section called col left :

 <div id="facet_job"></div>

The order is important, by default we have the facets in this order : by date, type and source. If I want to the job facet just after the source facet,
the file seems like that :

Ok now the final step is to localize the label name of our new facet. Let's edit the two files en.json and fr.json
in /opt/datafari/tomcat/webapps/Datafari/js/AjaxFranceLabs/locale :

We add a new line for the parameter 'job'. Here we add the same value for both the languages : Job. So the line to add is :

"job" : "Job",

Screenshot of the fr.json file :

The configuration is now over. We can check if our new facet is correctly displayed in Datafari :

It seems to be the case. We can now filter the results by the ManifoldCF job : documents from Datafari website or France Labs website !

Fieldweights - Architecture and mechanism

The fields weight are stored in the file of the FileShare core.solrconfig.xml

The admin UI proposed in Datafari communicates with the servlet, which in turn:FieldWeight

reads the schema and solrconfig files,
modifes the solrconfig.

When you go on the UI, it immediately sends a request towards the servlet to get the fields that are appended to the select.

Selecting a field will acquire a semaphore to prevent people from reading or writing a value that you are about to change.

Once you selected a file, you will get its current weight (0 if not weighted). Confirming your modifications will send the request and release the
semaphore. Due to the particular structure of the lines involved, this functionnality has its dedicated servlet, but if you want to modify the content
of a node, you can use the ModifyNodeContent servlet.

Note that there are two types of query with their own weight for each fields, so there is one semaphore per type, since you will not have
to modify the same line in the file.

ModifyNodeContent
It is a servlet that opens solrconfig.xml and looks for a node with a specified attribute. For instance, assuming there is a node with
parameter "name" equal to "threshold", and we want to set the node value to 0.01:

This is done by applying the following parameters:

Likes and Favorites

Problematic :

Starting with Datafari 2.0, users have the possibility to store pointers to documents shown in results list.

In the following document, “likes” corresponds to the functionality where a connected user can like or unlike a document, and “favorites”
corresponds to the functionality where a connected user can save a pointer to a document he found in the results list.

Technically wise, we use Apache Cassandra for saving all the likes and favorites and Solr for saving the counters of likes of each document.

Using Cassandra, we cannot use standard relational db schemas, like the following:

Modeling with Nosql in mind:

For our nosql modeling, we took our inspiration from this article .http://docs.mongodb.org/manual/tutorial/aggregation-with-user-preference-data/

Applied to our problematic, we get the following :

<float name="threshold">0.005</float>

This line will then become :
<float name="threshold">0.01</float>

This servlet is currently used by the size Limitation UI, and by the autocomplete configuration UI. This allows to prevent two or more
users from modifying the same value. This servlet creates a semaphore on the doGet. The semaphore is based on the value of the
attribute: in our previous example, “threshold”, someone can modify the size limitation and someone else can modify the threshold of
the autocomplete.

http://docs.mongodb.org/manual/tutorial/aggregation-with-user-preference-data/

1.

That means we have dedicated to likes and favorites (which is distinct from the collection dedicated to user authentication and authorization).

The request :

The aim is to get for the connected user the list of documents he liked out of the ones which are currently displayed. After the standard search
query, we send only one http request which contains only the username . In return, we get all the documents in the index that are liked, as well as
the list of favorites.

On the browser side, we go through this documents list and pick the ones that match the currently displayed documents to identify the favorites
and the liked.

In order to display the total number of likes per documents, we use Solr and its External File Fields mechanism (https://cwiki.apache.org/confluen
).ce/display/solr/Working+with+External+Files+and+Processes

Every time a connected user like or unlikes a document, we increment or decrement the counter of the document in the file located in
SOLR_HOME/FileShare/data/externalk_nbLikes.

The Implementation :

There are two parts: Frontend and backend. For the frontend, we added a widget that builds the inteface and makes all the Ajax Requests. For
the backend, we created two classes: Like and Favorite. We created the corresponding servlets that use these two classes and send back the
result.

Frontend :

The widget is called LikesAndFavoritesWidget. This widget inherits from ResultWidget and is only included in SearchView.jsp if the

https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes

1.

functionality of likes was activated by the admin.

This inheritance is important because we need to execute first the code of the ResultWidget and then the LikesAndFavoriteWidget.

Once the buildWidget is executed, we execute the beforeRequest which will add the fl nbLikes:field(nbLikes) in the Solr query so we can
retrieve as part of the results the number of likes per document.

Then the afterRequest will fire. The afterRequest retrieves the documents liked and saved by the user from the server (ajax request) and
stores it in window.globalVariableLikes and window.globalVariableFavorites. Then we parse the results retrieved from Solr and put the
correct values in html by checking if the doc belong in the window.globalVariableLikes and window.globalVariableFavorites.

Next, we put a listener to the “Like” button and a listener for saving a favorite. Depending on which button is clicked, we send a request to
add/delete the favorite or the like from the server and from the lists saved in the global variable window of javascript.

Illustration 1: State Diagram of AfterRequest of LikesAndFavoritesWidget

 2. Backend :

We use two major classes which are Like And Favorite. They provide the method that will get, delete and add a Favorite or a Like by
querying the Cassandra database. Whenever a change is needed to likes and favorites, we use directly these classes.

Like.class and Favorite.class belong to the package com.francelabs.datafari.user which also contains where we putUserConstants.class
all the constant Strings used in this package.

We also use the following servlets:

AddFavorite: add a document to favorites,
AddLikes: add document to likes,
DeleteFavorite: delete a document from favorites,
Unlike: delete a document from the likes,
GetLikesAndFavorites: gets all the likes and the favorites of a user,,, .

AddLike, AddFavorite, DeleteFavorite and Unlike are very similar. Therefore we will detail only one of them, the others can be derived
from it. This is the sequence diagram involving the AddLike servlet:

Illustration 2: Sequence Diagram of AddLike for a normal Behaviour

Here is the sequence diagram that involves the LikesAndFavoritesWidget to retrieve the likes and favorites of a user :

Illustration 3: Sequence Diagram of getting the likes and favorites from server

Logging

Datafari 3.0 comes with a revised way of logging. All the logs generated by Datafari and the other components (Manifoldcf, Solr, ELK) have been
formated in order to be exploited by ELK.

Here is the new format :

[level] [timestamp] [thread name] - [process name]|[component
name]|[package name]|[message]

It is implemented through a log4j properties file for each Datafari component. The corresponding log4j pattern is the following:

%5p %d{ISO8601} (%t) - [process name]|[component name]|%c{3}|%m%n

For example, the following log4j conversion pattern has been defined in the log4j.properties file of Tomcat for the Datafari appender:

log4j.appender.datafari.layout.ConversionPattern=%5p %d{ISO8601} (%t) -
Tomcat|Datafari|%c{3}|%m%n

This configuration will generate log lines that look like this:

INFO 2016-07-25 16:38:08,374 (localhost-startStop-1) -
Tomcat|Datafari|datafari.startup.UserManagementLauncher|UserManagement
info
 INFO 2016-07-25 16:38:08,851 (localhost-startStop-1) -
Tomcat|Datafari|service.db.DBContextListerner|Cassandra client
initialized successfully
 INFO 2016-07-25 16:38:08,936 (localhost-startStop-1) -
Tomcat|Datafari|datafari.alerts.AlertsManager|Alert config file
successfully read
 INFO 2016-07-25 16:38:08,945 (localhost-startStop-1) -
Tomcat|Datafari|datafari.alerts.AlertsManager|Alert scheduler started

With this kind of format, Datafari can push every generated log line to Elasticsearch thanks to Logstash, and Kibana can be used to visualize and
exploit them with efficiency.

To understand the specific log4j patterns used, refer to the official doc: https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Pa
tternLayout.html

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

ELK logs exploitation

When ELK is activated in Datafari, every log file generated by Datafari and its components is pushed to Elasticsearch thanks to Logstash. The
configuration file of Logstash is the following: DATAFARI_HOME/elk/logstash/logstash-datafari.conf and the template used to create the
Elasticsearch logs indices is DATAFARI_HOME/elk/logstash/templates/datafari-logs-template.json

If you open the logstash-datafari.conf file, you will notice that the configuration also includes the statistics and monitoring logs. It is because
logstash can only manage one config file by process and one of the best practice is to limit the number of logstash processes.
This is the reason why you will also notice that the inputs are "marked" with a "type" which can be 'log' or 'exploit' and is used to apply a different
parsing and insertion strategy for the inputs.

The other thing to notice in the logstash conf file is that the logs are inserted in a daily index and the logs with a "DEBUG" level are ignored.
These lines are used to specify that the logs must be pushed to the index corresponding to the log date (variable %{index_date} which is created
earlier in the conf file):

if [type] == "log" {
 if [level] != "DEBUG" {
 elasticsearch {
 hosts => ["localhost:9200"]
 index => "logs-%{index_date}"
 template => "./templates/datafari-logs-template.json"
 template_name => "datafari-logs"
 template_overwrite => true
 flush_size => 100
 idle_flush_time => 1
 }
 }
}

For example, the following log line:

INFO 2016-07-25 16:38:08,936 (localhost-startStop-1) -
Tomcat|Datafari|datafari.alerts.AlertsManager|Alert config file
successfully read

will be inserted in the Elasticsearch index named "logs-2016.07.25". This behavior has been implemented to facilitate the purge of Elasticsearch
when necessary. All you need to do is to delete the indices that you consider too old and all the logs corresponding to the index date will be
deleted. This is a quick way, with a low resource consumption, to purge Elasticsearch and it is recommended by the Elasticsearch best practices.

Once the logs are inserted in Elasticsearch, you will be able to consult them and create dashboards with Kibana which make it a powerful tool for
monitoring. To create dashboards or visualizations for the logs, simply connect to Kibana either by the direct url orhttp://[HOSTNAME]:5601
through the admin UI of Datafari.
Go to the indices settings, click on the 'Add New' button, and add the new pattern 'logs-*'

Starting with Datafari 3.1

Check that Kibana detects the field 'date' as in the above screenshot and click on 'Create'. You should obtain the following result:

Now you can create visualizations and dashboards, but you can already some visualizations and dashboards made by France Labs by importing
the file datafari-logs-kibana.json located in DATAFARI_HOME/elk/save. To import them, go to Setting => Objects in Kibana, click on the import
button then select the json file.

Save search - technical doc

Datafari 3.2 introduces a new feature which allows you to save a search. This feature is divided in four parts:

The UI: a new div element has been added to the file WebContent/searchView.jsp. The id of this div element is 'save_search' and the div
is only added when an authenticated user is detected to prevent unsupported access to the feature.
The widget: the javascript of the widget that adds the search button and implements its behavior is located in
WebContent/js/AjaxFranceLabs/widgets/SaveSearch.widget.js and is instanciated in the file WebContent/js/search.js. The widget
javascript file needs also to be imported in the file WebContent/searchView.jsp. The widget function is to save all the parameters of the
query performed by Solr, thanks to the manager.store object.
The servlet: Once the user clicks on the "Save search" button, he needs to enter a name and validate. When the 'Validate' button is
pushed, the widgets sends the chosen search name and the search infos (the query performed by Solr) to the servlet "/saveSearch". The
servlet retrieve the query parameters, the name entered by the user and the username, and insert everything in the Cassandra database.
The servlet java code is located in src/main/java/com/francelabs/datafari/servlets/SaveSearch.java
The database table: The servlet insert the saved search data into the datatable "search" of the Datafari database of Cassandra. This
table is created thanks to the script datafari-cassandra/conf/dev-env/tables and is composed of three fields:

username: the user name
name: the search name entered by the user
request: the Solr query parameters corresponding to the saved search

Security

This section details the way Datafari manages security.

CustomCombinedRealm - Architecture and mechanism

In Datafari, we propose a user management following the standard Role Based Access Control mechanism.

We use two steps:

the authentication step, to ensure a user is who he claims to be (using credentials validation),
the authorization step, to ensure the authenticated user is allowed to see a certain part of Datafari (be it admin pages or secured
documents in the search results list).

To manage that propery, we rely on the Tomcat Realm mechanisms. Still, there was no existing realm to satisfy our needs, which are to do the
authentication either on a remote LDAP/AD or on our Cassandra, and to do the authorization on our Cassandra (and Solr for the search part, but
this is another story). This is why we have created CustomCombinedRealm and a user data model in our Cassandra.

CustomCombinedRealm is a class that belongs to the package com.francelabs.datafari.realm.
This class inherits from and differs from its super class by collecting the roles.CombinedRealm

We developed this class to retrieve the roles of a user from our Cassandra database, and the user authentication either from AD/LDAP or from
Cassandra. That means that even if we use LDAP for authentication, we will get the corresponding roles from Cassandra and not from LDAP.

The process is as follows:

we start by requesting an authentication in Cassandra.
In case of success, we get the corresponding roles from it but if it fails we use LDAP for authentication.
If the authentication succeeds, we get then the roles from Cassandra and if it fails we return an error to the user.

You can see below the illustration of these steps.

As shown above, CustomCombinedRealm communicates with the two Realm : and the CassandraRealm JNDIRealm (AD/Ldap Realm). These
classes will communicate respectively to there databases and check if the authentication succed and return the response to the
CustomCombinedRealm.

Here is the overall architecture to understand the way it works:

Understanding Security Realms

This document explains how user management is done in Datafari, following the RBAC () model.Role Based Access Control

Datafari uses three Tomcat Realms for the authentication. This functionality is used to recognize the user and give him a personalized
environment.

Also, every user has a specific role which will allow the user to have access to specific areas of Datafari and to prevent others from having this
ability.

This functionality is of no use for persons who install Datafari on their personal computers.

The steps for authentication is illustrated in the three pictures below.

https://en.wikipedia.org/wiki/Role-based_access_control

As shown above, when a user wants to authenticate, Datafari first calls .CombinedRealm

CombinedRealms triggers , which will check the authentication using the database of Cassandra. If it fails, triggCassandraRealm CombinedRealm
ers that will check the authentifcation using the AD/LDAP you have configured. These steps are done using the userJNDI DirectoryRealm
credentials provided.

It is important to note that AD/LDAP is not required for Datafari to work : You can use only Cassandra without changing any setting.

Since Datafari uses 3 realms, they need to be configured. and should not require you toCustomCombinedRealm GenericCassandraRealm
modify their configuration, as they are embedded in the Datafari package. Still, in case you want to customise them, it is feasible. The realm that
requires configuration is the , for the remote AD/LDAP connection. These configurations are done in , which is in JNDIRealm context.xml WebCont

 :ent/META-INF

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <Realm
 className="com.francelabs.realm.CustomCombinedRealm">
 <Realm
 authDB="db-containing"
 authCollection="users"
 authUserField="username"
 authPasswordField="password"
 authRoleField="role"
 className="com.francelabs.realm.GenericMongoRealm"
 defaultDbHost="localhost"
 defaultDbPass=""
 defaultDbUser=""
 defaultRole="user"
 digest="SHA-256"/>
 <Realm
 className="org.apache.catalina.realm.JNDIRealm"
 connectionURL="ldap://ldap.forumsys.com:389"
 userPattern="uid={0},dc=example,dc=com"
 connectionName="cn=read-only-admin,dc=example,dc=com"
 connectionPassword="password"/>
 </Realm>
</Context>

Regarding the last Realm above, which relates to the AD/LDAP, its configuration depends on your AD/LDAP system. To configure it properly,
please follow the Tomcat 7 JNDIRrealm howto page (url:)https://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Regarding the Cassandra realm configuration: by default, the Cassandra database requires no username and password. Still, you should
definitely add a password and a username for the connection your Cassandra. Once this is done, fill in these information in and defaultDbUser def

.aultDbPass

Semantics

In this section, you will find information on the "semantics" capabilities of Datafari. We put semantics in brackets, because some of you may
consider that certain functionalities are not real semantics. But since we noticed some of our competitors don't hesitate to flag as semantic the
simple use of a dictionary to handle synonyms, we've decided to create this section. So you will find here details about the management of
synonyms and stopwords, promolinks, and ontologies.

Link an ontology

Datafari gives you the opportunity to link an ontology to it, in order to enrich your documents with the ontology data and then use these additional

https://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

infos in the search phase.

To do so, the first step is to add the OntologyUpdateProcessor as a custom UpdateProcessor in the file {Datafari_Home}/solr/solr_home/FileShar
e/conf/customs_solrconfig/custom_update_processors.xml

The OntologyUpdateProcessor will index, for each document inserted in Solr, the labels of the corresponding node into the specified ontology but
also its parents and children labels and URIs.
It has several parameters that can be set:

enabled : boolean value to enable/disable the OntologyUpdateProcessor
annotationField :] [REQUIRED the field in the input document that contains the annotation URI used as the reference in the ontology.

ontologyURI : the location of the ontology, such as or file:///ontology/owl.rdf] [REQUIRED http://francelabs.com/ontology/owl.rdf

labelField : the field in your schema that should be used for the annotation's label(s). Default: ontology_labels
childField : the field to be used for child document references. These are direct (ie. single-step) relationships the hierarchy.down
Default: ontology_children
parentField : the field to be used for parent document references. These are direct relationships the hierarchy. Default: up ontology_pare
nts
childLabel : the field to be used for child documents labels. Default: ontology_children_labels
parentLabel : the field to be used for parent documents labels. Default: ontology_parents_labels
useLanguages : (boolean) should language distinction for label fields be used ? If this is set to , the processor will create additionaltrue
label fields for each language found, using the language as a suffix, for instance _fr, ontology_parents_labels ontology_parents_labels_e
n
The field format is]_[Original_Label_Field][Language
This is useful if you want to have, in addition to the original label fields which will contain all values, specific label fields containing values
of the concerned language. But remember that the more the Ontology contains languages, the more it will create label fields.
Default: false
includeIndirect : (boolean) should indirect parent/child relationships also be indexed ? If this is set to , ancestor and descendanttrue all
labels and URIs will also be added to the document. Default: .false
descendantsField : the field to be used for the full set of descendant references. These are direct AND indirect relationships thedown
hierarchy. Default: ontology_descendants
ancestorsField : the field to be used for the full set of ancestor references. These are direct AND indirect relationships the hierarchy.up
Default: ontology_ancestors
descendantsLabel : the field to be used for descendant documents labels. Default: ontology_descendants_labels
ancestorsLabel : the field to be used for ancestor documents labels. Default: ontology_ancestors_labels

To implement the OntologyUpdateProcessor, follow these steps:

open the ' ' file in custom_libs.xml {Datafari_installation_folder}/solr/solr_home/FileShare/conf/customs_solrconfig/
add the following line (replace the '<to_remove_tag>') :

<lib dir="./lib/jena"/>

Note that this field must be added to the document by yourself: Datafari does not provide any plugin or other mechanism to do
it. You may want to modify the DatafariUpdateProcessor or make your own UpdateProcessor to do so.

Datafari only supports OWL ontology format for now, so the ontologyURI parameter has to reference a OWL formated ontology

If you decide not to use the default values for the fields, DO NOT FORGET to add them in the appropriate custom schema file(s) which
are located in {Datafari_Home}/solr/solr_home/FileShare/conf/customs_schema
Otherwise none of the ontology features will work !

Datafari uses Apache Jena to load an ontology

http://francelabs.com/ontology/owl.rdf

open the ' ' file in the same locationcustom_update_processors.xml
add the following lines(still replace the '<to_remove_tag>'):

<processor
class="com.francelabs.datafari.updateprocessor.OntologyUpdateProces
sorFactory">
 <bool name="enabled">true</bool>
 <str name="annotationField">ontology_annotation</str>

 <!-- Location of the ontology -->
 <str name="ontologyURI">file:///owl.rdf</str>
</processor>

Restart Datafari
Crawl (again) your documents to add to them the new fields generated by the OntologyUpdateProcessor

Then, you can configure Datafari to use the new Ontology infos on the search requests :

open the 'datafari.properties' file in {Datafari_installation_folder}/tomcat/conf/
Modify those lines to set the ontologyEnabled property to and the other lines to match with your ontology configuration:true

ontologyEnabled=true
ontologyLanguageSelection=true
ontologyNodeLabels=ontology_labels
ontologyChildrenLabels=ontology_children_labels
ontologyParentsLabels=ontology_parents_labels

ontologyEnabled : (boolean) Enable or disable the ontology use
 : (boolean) should use the Datafari selected language for the ontology labels ? If , be sure that youontologyLanguageSelection true

used the with the parameter set to during the crawl of the documents by MCFOntologyUpdateProcessor userLanguages true
 : the field in your schema that contains the annotation's label(s)ontologyNodeLabels

 : the field in your schema that contains the child documents labelsontologyChildrenLabels
 : the field in your schema that contains the parent documents labelsontologyParentsLabels

Your Datafari is now ready to use the ontology additional fields during search queries thanks to the OntologySuggestion.widget

Promolinks - architecture and mechanism

Promolinks are indexed in a solr Core. The configuration is located in $DATAFARI_HOME/solr/solr_home/Promolinks/conf

A Promolink contains five fields :

a keyword (mandatory field) which is unique since it is also the id of the PromoLink,
a title (mandatory field),
a content (mandatory field),
a starting date (before this date the PromoLink will not be displayed) (optional),
an ending date (after this date the capsule will not be printed) (optional).

You can see all the existing Promolinks in the Admin UI. You can also add or delete or edit a Promolink on this page. This UI communicates with
the admin servlet which communicates with the solr core.

Of course you have to replace the values by yours and also add the optional parameters described up above with what you
want

When you make a search on Datafari, once SearchProxy's doGet, two queries are sent:

One is sent to FileShare to retrieve the documents
Another is sent to the PromoLink core.

If a promolink is found, there will be a check of the dates (if those are filled).
If dates are not filled, the promolink will be considered as valid and it will be put in the promolinkSearchComponent key of the
json object returned at the end.
Then the promolink widget will print it at the beginning of the result list.

The Solr fieldtype chosen for the field keywork is named capsuleType :

<fieldType name="capsuleType" class="solr.TextField"
positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory" />
<filter class="solr.ASCIIFoldingFilterFactory"/>
</analyzer>
</fieldType>

Basically it splits the token at each blank character, it puts the string in lowercases and removes the accentuated characters. So it supports
multiple words.

Synonyms and stopwords

Those two functionnalities are very similar since they use the corresponding Solr basic functionnalities that rely on a text file.

Unless it has been modified, those text files are located in the conf folder of the FileShare core.

The Admin UI allows the user to see and modify the files.

The syntax for the synonyms is as follows :

i-pod, i pod => ipod,
sea biscuit, sea biscit => seabiscuit

The syntax for the stopwords file is the following one :

a
an
to
from

To prevent two people from modifying the same text file at the same moment, the servlets dedicated to these functionnalities use a mutex
semaphore. There is also a list_language.txt that you have to fill, which defines where to apply the semaphores.

Setup Development Environments

This section explains how to set up your development environment for the different versions of Datafari.

Setup development environnement with Eclipse (Linux)

Clone repository

git clone https://github.com/francelabs/datafari.git

Open the project in Eclipse

Open a terminal. Navigate to the folder datafari. We now call it DATAFARI_SRC.

Run an : "ant eclipse" in DATAFARI_SRC.

In eclipse, do an « import existing project into workspace ».

Select the DATAFARI_SRC folder and click Finish.

You can see the effect of the stopword filter in the solr admin UI analysis.

DEPECRATED
This page is deprecated as of Datafari 2.0

https://github.com/francelabs/datafari.git

Setup the Tomcat server in Eclipse

Go to Window => => => => Preferences Server Runtime Environments Add…

and select Apache Tomcat V. 7.0

Select DATAFARI_SRC/tomcat for the Tomcat Installation directory and Finish.

In a server windows (for example in Debug Perspectives), click on "add a server", select a "tomcat 7.0

server" and set the server name to "Datafari":

Double click on Datafari to change its configuration :

Click on « Use tomcat installation » and on « Open launch configuration ».

In argument, add this to VM arguments :

-Dsolr.solr.home="DATAFARI_SRC/solr/solr_home" -Dorg.apache.manifoldcf.configfile="DATAFARI_SRC/mcf/mcf_hom
e/propertiesDev.xml"

And replace the parameter catalina.home by the path of your DATAFARI_SRC/tomcat :

-Dcatalina.home="DATAFARI_SRC/tomcat"

Finally, if you want to access to the manager page of Tomcat and the Banana page, you have to copy/paste the webapps into the webapps folder
of your Eclipse workspace :

cp -R DATAFARI_SRC/tomcat/webapps/ROOT your-eclipse-workspace/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/webapps/

cp -R DATAFARI_SRC/tomcat/webapps/manager your-eclipse-workspace/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/webapps/

cp -R DATAFARI_SRC/tomcat/webapps/banana.war your-eclipse-workspace/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/webapps/

In java EE perspective, select File Import and select Web War File :

Browse to DATAFARI_SRC/solr/war/solr.war and set name of web project to datafari-solr.

Do the same for DATAFARI_SRC/mcf/war/mcf-api-service.war with the name datafari-mcf-api-service, for
DATAFARI_SRC/mcf/war/mcf-crawler-ui.war (web project name : datafari-mcf-crawler-ui) and for
DATAFARI_SRC/mcf/war/mcf-authority-service.war (web project name : datafari-mcf-authority-service).

Go back to the server window. Right click on Datafari, and do an Add and Remove… Add all the web app application (Datafari, datafari-solr,
datafari-mcf-crawler-ui, datafari-mcf-api-service, datafari-mcf-authority-service).

Go to the « Servers » « Datafari Config » directory in the « Package explorer » of eclipse. Change the Datafari admin password in the
tomcat-users.xml file. Copy DATAFARI_SRC/tomcat/conf/datafari.properties in the Datafari Config directory. You can now run the Datafari tomcat
server

Run database and manifold agents

Open a terminal and set JAVA_HOME environement variable and navigate to DATAFARI_SRC/mcf/mcf_home.

Run bash start-database-dev.sh.

In another terminal, run bash initialize-dev.sh and then start-agent-dev.sh.

Keep the two terminals opened.

Configure connectors

Run Datafari tomcat. Go to the Datafari URL (). Login in administrator. Go to Crawler tab-> Manifold CF Admin.http://localhost:8080/Datafari

Log in and click on « List Output Connections » and create a new « Output Connection ». Set the name to « DatafariSolr ». Set Port to « 8080 »,
set web application name to « datafari-solr » and « Core/Collection name » to FileShare. You can now save:

http://localhost:8080/Datafari

Your development environnement is now ready.

Setup development environment with Eclipse (Linux) for Datafari 2.0

Pre-requisites

Have a JDK installed on your PC (suggested version Java 7)
Have an IDE installed on your PC (in the guide we use Eclipse) and be able to lunch it as root
Have git installed on your PC

Clone repository

Open a terminal and navigate to the folder where you want to have Datafari source code to be checkouted (usually your workspace folder).

Perform a

git clone https://github.com/francelabs/datafari.git

to checkout the code. The root directory name is datafari.

Open the project in Eclipse

Navigate to the folder datafari. We now call it .DATAFARI_SRC

Run an : "ant eclipse" in DATAFARI_SRC.

 If you get an error related to tools.jar not found, please check your JAVA_HOME environment variable.

DEPRECATED

Deprecated : this page is for versions of Datafari older than 2.1, the one for 2.x is with Maven environment : Set

up development environment with Eclipse (Linux) for Datafari 2.x - Maven

https://github.com/francelabs/datafari.git

 Run Eclipse as root

In eclipse, go to File -> Import... , expand General and do an « Import existing projects into workspace ».

Select the DATAFARI_SRC folder as root directory and click Finish.

Setup the Tomcat server in Eclipse

Go to Window -> Preferences -> Server -> Runtime Environments -> Add…

and select Apache Tomcat V. 7.0

Select DATAFARI_SRC/tomcat for the Tomcat Installation directory and Finish.

In a Servers window (for example in Debug Perspectives), click on "add a server", select a "tomcat 7.0 server" and set the server name to
"Datafari":

Double click on Datafari to change its configuration :

In Server Locations section: select « Use Tomcat installation ».

In General Information section, click on « Open launch configuration ».

In Arguments tab, add this to VM arguments :

-Dorg.apache.manifoldcf.configfile="DATAFARI_SRC/mcf/mcf_home/propertiesDev.xml"
-Dsolr.solr.home="DATAFARI_SRC/solr/solr_home/"

[Optional] And replace the parameter catalina.home by the path of your DATAFARI_SRC/tomcat :

-Dcatalina.home="DATAFARI_SRC/tomcat"

Finally, if you want to access to the manager page of Tomcat and the Banana page, you have to copy/paste the webapps into the webapps folder
of your Eclipse workspace :

cp -R DATAFARI_SRC/tomcat/webapps/ROOT
your-eclipse-workspace/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/webapps/

cp -R DATAFARI_SRC/tomcat/webapps/manager
your-eclipse-workspace/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/webapps/

cp -R DATAFARI_SRC/tomcat/webapps/banana.war
your-eclipse-workspace/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/webapps/

In Java EE perspective, select File -> Import and select Web -> War File :

Browse to DATAFARI_SRC/mcf/war/mcf-api-service.war and set name of web project with the name datafari-mcf-api-service,
for DATAFARI_SRC/mcf/war/mcf-crawler-ui.war (web project name : datafari-mcf-crawler-ui) and
for DATAFARI_SRC/mcf/war/mcf-authority-service.war (web project name : datafari-mcf-authority-service).

Go back to the Servers window. Right click on Datafari, and do an Add and Remove… Add all the web app applications (Datafari,
datafari-mcf-crawler-ui, datafari-mcf-api-service, datafari-mcf-authority-service).

Open either Package explorer or the Navigator view: Go to Servers Datafari-config directory.
Change the Datafari admin password in the tomcat-users.xml file (look for @PASSWORD@).
Copy DATAFARI_SRC/tomcat/conf/datafari.properties in the Datafari-config directory.

Run Ant on DATAFARI_SRC/build.xml in order to build the required libraries (Right click on build.xml of datafari web project, then select Run As
-> Ant build) :

Run Solr and Cassandra

Start Datafari: Open a terminal and navigate to DATAFARI_SRC/dev-tools/script/debian.

You need to be root to run the command.

bash start-datafari-devmode.sh

After that, you will need to initialize Cassandra. To do it, go to DATAFARI_SRC/dev-tools/script/debian.

You also need to be root to run the command.

bash configure-cassandra-dev.sh

The command ends without any feedback.

The Cassandra keyspace and the tables are created. A new user 'admin' is created too. The credentials to login to Datafari admin are :
admin/admin

Check if the folder DATAFARI_SRC/pid is created and if the Solr and Cassandra PID files are present. If not create it manually and affect enough
rights for the folder. For example :

mkdir DATAFARI_SRC/pid

sudo chmod -R 777 DATAFARI_SRC/pid

Run database and ManifoldCF agents

[Optional] Set JAVA_HOME environment variable pointing to your installation of Java.

Open a terminal and navigate to DATAFARI_SRC/mcf/mcf_home.

(you may need to change the permissions on the MCF folder if you are not root)

Run

bash start-database-dev.sh.

In another terminal, run (ONLY ONCE, the first time you set-up Datafari dev environment)

bash initialize-dev.sh

and then

bash start-agents-dev.sh.

Keep the two terminals open.

Run Tomcat

Go to Eclipse and start the Tomcat server (from Servers view)

 If you get FileNotFoundExceptions on the Datafari and/or Solr log files, please run Eclipse as root.

Go to the Datafari URL ()http://localhost:8080/Datafari

To login into Datafari, the credentials are : admin/admin

Configure connectors

Run Datafari tomcat. Go to the Datafari URL (). Login in administrator (admin/admin).http://localhost:8080/Datafari

In the left menu, click on Connectors; the Apache ManifoldCF login page shows up. Enter admin/admin to login (click on Login button, as the
Enter key may not work).

Click on « List Output Connections » of Output section, and add a new « Output Connection ».

http://localhost:8080/Datafari
http://localhost:8080/Datafari

In Name tab, set the name to « DatafariSolr ».
In Type tab, set the connection type to Solr and then click on Continue button.
In the Server tab, set port to « 8983 », set web application name to « solr » and « Core/Collection name » to FileShare.

You can now save:

Your development environment is now ready.

 For more information about ManifoldCF configuration, please have a look here: Crawling

Setup development environment with Eclipse (Linux) for Datafari 2.x - Maven

Pre-requisites

Have a JDK installed on your PC (suggested version Java 7)
Have an IDE installed on your PC (in the guide we use Eclipse)
Have git installed on your PC
Have Maven installed on your PC (at least version 3.0.5)
Have Ant installed on your PC
Have an Internet connection available (No offline installation permitted)

 Wondering what are the possible Datafari build flows ? Have a look here Distributions HOW-TO

Clone repository

Open a terminal and navigate to the folder where you want to have Datafari source code to be checkouted (usually your workspace folder).

Perform a

git clone -b maven datafarihttps://github.com/francelabs/datafari.git

to checkout the code. The root directory name must be "datafari": we now call it .DATAFARI_SRC

https://datafari.atlassian.net/wiki/display/DATAFARI/Distributions+HOW-TO
https://github.com/francelabs/datafari.git

Open the project in Eclipse

Start Eclipse by calling the executable from the workspace folder (the one directly containing DATAFARI_SRC).

In eclipse, go to File -> Import... , expand Git and do a « Projects from Git ».

Select "Existing local repository" and add the repo we have just cloned (by means of browse pop-up).

Use "Import as general project" as Wizard. (Don't worry, the classpath and Eclipse settings will be set-up by Ant script).

Select the DATAFARI_SRC folder as root directory and click Finish.

Leave Eclipse build the project automatically.

You should get this output, in project explorer view:

As you can see, there are some "red crosses". This is not a problem as they are coming from external packages like ManifoldCF and Solr UI.

Eclipse configuration

In order to properly configure the classpath and the facets of the project, navigate to DATAFARI_SRC folder and run the following script:

ant -f ./dev-tools/setup-devenv/eclipse/setup-eclipse.xml

Check the Eclipse config

The Datafari Git repo contains some Eclipse config as well.

It's better to check that it has been correctly set-up =P:

Right click on datafari project -> Properties

Java Build path should be the following:

Deployment assembly:

Java compiler should be as follows (Java 7):

Project facets:

Dynamic Web Module V 3.0

Java V 1.7

JavaScript V 1.0

Run Maven build

Run Maven on DATAFARI_SRC/pom.xml in order to build the required libraries (Right click on pom.xml of datafari web project, then select Run
As -> Maven build) :

Leave empty the goals section, the default one will be run.

A console shows up with the output of Maven compilation.

At the end of the build process (it may take some time due to the download of external dependencies), you should see this output:

[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] Datafari Enterprise Search - Dependencies POM SUCCESS [0.441 s]
[INFO] Datafari Enterprise Search - Parent POM SUCCESS [32.289 s]
[INFO] Datafari Enterprise Search - Core module SUCCESS [3.689 s]
[INFO] Datafari Enterprise Search - UpdateProcessor module SUCCESS [0.467 s]
[INFO] Datafari Enterprise Search - Capsule Search Component module SUCCESS [0.342 s]
[INFO] Datafari Enterprise Search - Realm module SUCCESS [0.355 s]
[INFO] Datafari Enterprise Search - ManifoldCF Backup/Restore Scripts module SUCCESS [4.674 s]
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 42.438 s
[INFO] Finished at: 2016-01-28T12:34:38+01:00
[INFO] Final Memory: 51M/700M
[INFO] --

Now check to have the some jars listed in Maven dependecies. They should point to your Maven's repo directory, eg user_home/.m2/repository.

If you see nothing in there or you have red crosses on some classes under Java Resources / src/main/java, right click on Datafari project, then
select Maven entry and Update project.
Eclipse is not refreshing dependencies automatically.
The dependencies should show up under Maven Dependencies (if it's not the case, refresh the project).

Setup Tomcat server in Eclipse

 Please note that we don't rely on Eclipse WTP environment, so the publish, clean, etc ... targets of server view are discouraged.
The only target you should run is the "start" of Tomcat.

Add Server view: Window -> Show view -> Servers

and click on the link to create a new server.

Select Apache Tomcat V. 7.0 and put:

host name: localhost

server name: Datafari

Select DATAFARI_SRC/tomcat for the Tomcat Installation directory and then next

DO NOT add Datafari web application to the server and then Finish.

If Datafari-config project pops-out, you are safe to delete it (generated by Eclipse WTP).

Double click on Datafari server to change its configuration :

In Server Locations section, select "Use custom location" (to use the Tomcat embedded in Datafari).

Check that all the other configs are the same as in screenshot. You shouldn't see the Modules tab on the right of overview, or it should be empty
(no deployed apps).

Notably, be careful that the paths are exactly as follows: datafari/tomcat/config and datafari/tomcat (no leading /)

In General Information section, click on « Open launch configuration ».

In Arguments tab, add this to VM arguments :

-Dorg.apache.manifoldcf.configfile="DATAFARI_SRC/mcf/mcf_home/propertiesDev-tomcat.xml"
-Dsolr.solr.home="DATAFARI_SRC/solr/solr_home/"

and then OK.

Modules tab should be empty or not visible at all.

Run ZK, Solr and Cassandra
Start Datafari: Open a terminal and navigate to DATAFARI_SRC/dev-tools/script/debian.

bash start-datafari-devmode.sh

After that, you will need to initialize Cassandra. To do it, go to DATAFARI_SRC/dev-tools/script/debian.

bash configure-cassandra-dev.sh

The command ends without any feedback.

The Cassandra keyspace and the tables are created. A new user 'admin' is created too.
The credentials to login to Datafari admin are : admin/admin

Finally we have to initialize Solr : send the Solr configuration to Zookeeper and create the Solr collections. Launch the script
configure-zk-solr-dev.sh in DATAFARI_SRC/dev-tools/script/debian

bash configure-zk-solr-dev.sh

Run database and ManifoldCF agents

Open a terminal and navigate to DATAFARI_SRC/mcf/mcf_home.

Run

bash start-database-dev.sh.

In another terminal, run (ONLY ONCE, the first time you set-up Datafari dev environment)

bash initialize-dev.sh

and then

bash start-agents-dev.sh.

Keep the two terminals open.

Run Tomcat

Go to Eclipse -> Servers view.

Start it (right click on the server name -> start).
Datafari application is already deployed by Maven/Ant.

 Please note that we don't rely on Eclipse WTP environment, so the publish, clean, etc ... targets of server view are discouraged.
The only target you should run are the "start / stop" of Tomcat.

Note: if you get this exception

INFO: Exception performing authentication. Retrying...
javax.naming.CommunicationException: 52.16.74.128:389 [Root exception is .SocketTimeoutException: connect timed out]java.net

it's the, let's say "normal" behaviour =P! (Fix on-going)

Go to the Datafari URL ()http://localhost:8080/Datafari

To login into Datafari, the credentials are : admin/admin

HAPPY SEARCHING !!!

 Need to get Datafari ready for production? Have a look here Distributions HOW-TO

Datafari incremental build and redeployment

For redeployment of Datafari Java sources and web resources ONLY (e.g. during an on-going dev), you can use the handy Ant targets "all" or
"redeploy" of datafari-dev.xml.
This script recompiles the Datafari core sources and deploys the application on Tomcat.

 If you get strange errors while running Ant, double check to run it on a JDK and not on a JRE (Oracle one, for instance).

Configure connectors

Run Datafari tomcat. Go to the Datafari URL (). Login in administrator (admin/admin).http://localhost:8080/Datafari

In the left menu, click on Connectors; the Apache ManifoldCF login page shows up. Enter admin/admin to login (click on Login button, as the
Enter key may not work).

Click on « List Output Connections » of Output section, and add a new « Output Connection ».
In Name tab, set the name to « DatafariSolr ».
In Type tab, set the connection type to Solr and then click on Continue button.
In the Server tab, set port to « 8983 », set web application name to « solr » and « Core/Collection name » to FileShare.

http://java.net
http://localhost:8080/Datafari
https://datafari.atlassian.net/wiki/display/DATAFARI/Distributions+HOW-TO
http://localhost:8080/Datafari

You can now save:

Your development environment is now ready.

 For more information about ManifoldCF configuration, please have a look here: Crawling

Setup development environment with Eclipse (Linux) for Datafari 3.1

Pre-requisites

Have a JDK installed on your PC (suggested version Java 7)
Have an IDE installed on your PC (in the guide we use Eclipse) and be able to lunch it as root
Have git installed on your PC

Clone repository

Open a terminal and navigate to the folder where you want to have Datafari source code to be checkouted (usually your workspace folder).

Perform a

git clone https://github.com/francelabs/datafari.git

to checkout the code. The root directory name is datafari.

Build Datafari for the development environment

Navigate to the folder datafari. We now call it .DATAFARI_SRC

https://github.com/francelabs/datafari.git

Run a : 'mvn install' in DATAFARI_SRC.

Run a : 'ant all' in DATAFARI_SRC/debian7

Install Datafari

Run a 'dpkg -i DATAFARI_SRC/debian7/installer/dist/datafari.deb and type an admin password.

Open the project in Eclipse

In Eclipse,go to File -> Import... , type maven and « Existing Maven project ».

Select the DATAFARI_SRC folder as root directory and click Finish.

Change permissions to Datafari :

chmod -R 777 /opt/datafari

chmod -R 700 /opt/datafari/pgsql

To add access rights to any user on datafari installation folder. Be careful : this should only for the development environment and shouldbe done
be avoided for a production deployment!

Setup the Tomcat server in Eclipse

Go to Window -> Preferences -> Server -> Runtime Environments -> Add…

and select Apache Tomcat V.9.0.

Select DATAFARI_SRC/tomcat-dev for the Tomcat Installation directory and Finish.

If Eclipse does not accept the Tomcat version, stop Eclipse, and copy the patch you can download here https://bugs.eclipse.org/bugs/attachment.
 in the plugins directory of Eclipse installation directory.cgi?id=262418&action=edit

In a Servers window (for example in Debug Perspectives), click on "add a server", select a "tomcat 9.0 server". Click on next and add Datafari
webapp :

Click Finish.

Run Datafari

Run Datafari in normal mode. Go to /opt/datafari/bin and run ./start-datafari.sh.

Start Tomcat server with a right click Start on the server:

https://bugs.eclipse.org/bugs/attachment.cgi?id=262418&action=edit
https://bugs.eclipse.org/bugs/attachment.cgi?id=262418&action=edit

Go to the Datafari URL ()http://localhost:9080/Datafari

Update Solr configuration :

If you change the solr configuration in DATAFARI_SRC/datafari-solr/solr_home, you have to run the script updateSolrConfig.sh in
DATAFARI_SRC/datafari-solr to update the config in Solr Cloud.

Configure connectors

Run Datafari tomcat. Go to the Datafari URL (). Login in administrator (admin/admin).http://localhost:9080/Datafari

In the left menu, click on Connectors; the Apache ManifoldCF login page shows up. Enter admin/admin to login (click on Login button, as the
Enter key may not work).

Click on « List Output Connections » of Output section, and add a new « Output Connection ».
In Name tab, set the name to « DatafariSolr ».
In Type tab, set the connection type to Solr and then click on Continue button.
In the Server tab, set port to « 8983 », set web application name to « solr » and « Core/Collection name » to FileShare.

You can now save:

http://localhost:8080/Datafari
http://localhost:8080/Datafari

Your development environment is now ready.

 For more information about ManifoldCF configuration, please have a look here: Crawling

Setup development environment with Eclipse (Linux) for Datafari 3.x - Maven

Pre-requisites

Have a JDK installed on your PC (suggested version Java 7)
Have an IDE installed on your PC (in the guide we use Eclipse)
Have git installed on your PC
Have Maven installed on your PC (at least version 3.0.5)
Have Ant installed on your PC
Have an Internet connection available (No offline installation permitted)

 Wondering what are the possible Datafari build flows ? Have a look here Distributions HOW-TO

Clone repository

Open a terminal and navigate to the folder where you want to have Datafari source code to be checkouted (usually your workspace folder).

Perform a

git clone -b master datafarihttps://github.com/francelabs/datafari.git

to checkout the code. The root directory name must be "datafari": we now call it .DATAFARI_SRC

https://datafari.atlassian.net/wiki/display/DATAFARI/Distributions+HOW-TO
https://github.com/francelabs/datafari.git

Open the project in Eclipse

Start Eclipse by calling the executable from the workspace folder (the one directly containing DATAFARI_SRC).

In eclipse, go to File -> Import... , expand Git and do a « Projects from Git ».

Select "Existing local repository" and add the repo we have just cloned (by means of browse pop-up).

Use "Import as general project" as Wizard. (Don't worry, the classpath and Eclipse settings will be set-up by Ant script).

Select the DATAFARI_SRC folder as root directory and click Finish.

Leave Eclipse build the project automatically.

You should get this output, in project explorer view:

As you can see, there are some "red crosses". This is not a problem as they are coming from external packages like ManifoldCF and Solr UI.

Eclipse configuration

In order to properly configure the classpath and the facets of the project, navigate to DATAFARI_SRC folder and run the following script:

ant -f ./dev-tools/setup-devenv/eclipse/setup-eclipse.xml

Check the Eclipse config

The Datafari Git repo contains some Eclipse config as well.

It's better to check that it has been correctly set-up =P:

Right click on datafari project -> Properties

Java Build path should be the following:

Deployment assembly:

Java compiler should be as follows (Java 7):

Project facets:

Dynamic Web Module V 3.0

Java V 1.7

JavaScript V 1.0

Add mcf-core lib to your maven repo

Datafari needs the mcf-core lib as a dependency. The problem is that Apache ManifoldCF does not have a maven repository so the library must
be added manually to the maven repository. To do so, open a terminal and change directory to the main directory of Datafari, then execute the
following command:

mvn install:install-file -Dfile=./datafari-mcf/lib/mcf-core-2.4.jar
-DgroupId=org.apache.manifoldcf -DartifactId=mcf-core -Dversion=2.4
-Dpackaging=jar -DgeneratePom=true

Run Maven build

Run Maven on DATAFARI_SRC/pom.xml in order to build the required libraries (Right click on pom.xml of datafari web project, then select Run
As -> Maven build) :

Leave empty the goals section, the default one will be run.

A console shows up with the output of Maven compilation.

At the end of the build process (it may take some time due to the download of external dependencies), you should see this output:

[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] Datafari Enterprise Search - Dependencies POM SUCCESS [0.441 s]
[INFO] Datafari Enterprise Search - Parent POM SUCCESS [32.289 s]
[INFO] Datafari Enterprise Search - Core module SUCCESS [3.689 s]
[INFO] Datafari Enterprise Search - UpdateProcessor module SUCCESS [0.467 s]
[INFO] Datafari Enterprise Search - Capsule Search Component module SUCCESS [0.342 s]
[INFO] Datafari Enterprise Search - Realm module SUCCESS [0.355 s]
[INFO] Datafari Enterprise Search - ManifoldCF Backup/Restore Scripts module SUCCESS [4.674 s]

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 42.438 s
[INFO] Finished at: 2016-01-28T12:34:38+01:00
[INFO] Final Memory: 51M/700M
[INFO] --

Now check to have the some jars listed in Maven dependecies. They should point to your Maven's repo directory, eg user_home/.m2/repository.

If you see nothing in there or you have red crosses on some classes under Java Resources / src/main/java, right click on Datafari project, then
select Maven entry and Update project.
Eclipse is not refreshing dependencies automatically.
The dependencies should show up under Maven Dependencies (if it's not the case, refresh the project).

Setup Tomcat server in Eclipse

 Please note that we don't rely on Eclipse WTP environment, so the publish, clean, etc ... targets of server view are discouraged.
The only target you should run is the "start" of Tomcat.

Add Server view: Window -> Show view -> Servers

and click on the link to create a new server.

Select Apache Tomcat V. 7.0 and put:

host name: localhost

server name: Datafari

Select DATAFARI_SRC/tomcat for the Tomcat Installation directory and then next

DO NOT add Datafari web application to the server and then Finish.

If Datafari-config project pops-out, you are safe to delete it (generated by Eclipse WTP).

Double click on Datafari server to change its configuration :

In Server Locations section, select "Use custom location" (to use the Tomcat embedded in Datafari).

Check that all the other configs are the same as in screenshot. You shouldn't see the Modules tab on the right of overview, or it should be empty
(no deployed apps).

Notably, be careful that the paths are exactly as follows: datafari/tomcat/config and datafari/tomcat (no leading /)

In General Information section, click on « Open launch configuration ».

In Arguments tab, add this to VM arguments :

-Dorg.apache.manifoldcf.configfile="DATAFARI_SRC/mcf/mcf_home/propertiesDev-tomcat.xml"
-Dsolr.solr.home="DATAFARI_SRC/solr/solr_home/"

and then OK.

Modules tab should be empty or not visible at all.

Run ZK, Solr and Cassandra
Start Datafari: Open a terminal and navigate to DATAFARI_SRC/dev-tools/script/dev.

Edit the variable DEV_OS in dev-datafari.properties. if you are on Debian (let debian 7 for all versions of Debian) or MacOSX :

DEV_OS=debian7

The two possible variables are : debian7 or macosx.

The property STATE indicates if you launch for the first time the development environment.
The possible values are : installed if you never launched it and initialized if you have already launched at least one time the environment.

Then start the script start-datafari-devmode.sh :

bash start-datafari-devmode.sh

For the first launch, it will need some time to launch and initialize Zookeeper, Solr adn Cassandra.

A new user 'admin' will be created in Cassandra database.

The credentials to login to Datafari admin are : admin/admin.

To stop datafari :

bash stop-datafari-devmode.sh

Note that a convenient script is also present : restart-solr-devmode.sh in order to reload only Solr and not other services like ZK.

Run database and ManifoldCF agents

Open a terminal and navigate to DATAFARI_SRC/mcf/mcf_home.

Run

bash start-database-dev.sh.

In another terminal, run (ONLY ONCE, the first time you set-up Datafari dev environment)

bash initialize-dev.sh

and then

bash start-agents-dev.sh.

Keep the two terminals open.

Run Tomcat

Go to Eclipse -> Servers view.

Start it (right click on the server name -> start).
Datafari application is already deployed by Maven/Ant.

 Please note that we don't rely on Eclipse WTP environment, so the publish, clean, etc ... targets of server view are discouraged.
The only target you should run are the "start / stop" of Tomcat.

Note: if you get this exception

INFO: Exception performing authentication. Retrying...
javax.naming.CommunicationException: 52.16.74.128:389 [Root exception is .SocketTimeoutException: connect timed out]java.net

it's the, let's say "normal" behaviour =P! (Fix on-going)

Go to the Datafari URL ()http://localhost:8080/Datafari

To login into Datafari, the credentials are : admin/admin

HAPPY SEARCHING !!!

 Need to get Datafari ready for production? Have a look here Distributions HOW-TO

Datafari incremental build and redeployment

For redeployment of Datafari Java sources and web resources ONLY (e.g. during an on-going dev), you can use the handy Ant targets "all" or
"redeploy" of datafari-dev.xml.
This script recompiles the Datafari core sources and deploys the application on Tomcat.

 If you get strange errors while running Ant, double check to run it on a JDK and not on a JRE (Oracle one, for instance).

http://java.net
http://localhost:8080/Datafari
https://datafari.atlassian.net/wiki/display/DATAFARI/Distributions+HOW-TO

Configure connectors

Run Datafari tomcat. Go to the Datafari URL (). Login in administrator (admin/admin).http://localhost:8080/Datafari

In the left menu, click on Connectors; the Apache ManifoldCF login page shows up. Enter admin/admin to login (click on Login button, as the
Enter key may not work).

Click on « List Output Connections » of Output section, and add a new « Output Connection ».
In Name tab, set the name to « DatafariSolr ».
In Type tab, set the connection type to Solr and then click on Continue button.
In the Server tab, set port to « 8983 », set web application name to « solr » and « Core/Collection name » to FileShare.

You can now save:

Your development environment is now ready.

 For more information about ManifoldCF configuration, please have a look here: Crawling

Unit Testing

Datafari 3.x comes with some Unit Tests (at last !)

Three frameworks for Unit Testing are embedded in this version of Datafari :

JUnit : the standard JAVA Unit Testing framework
Mockito : famous framework that allow to mock JAVA objects
XMLUnit : very useful framework for XML comparison

We think that these three frameworks cover more than 90% of the needs when creating a Unit Tests, so now you have no good excuses to create
Unit Tests when it is possible for your development.

http://localhost:8080/Datafari

Now, let's try to explain our usages and good practices of the Unit Tests in Datafari:

- The first thing to know is that all the existing and future Unit Tests have to be located in Datafari_Home/src/test. As you will notice, there are two
sections in this directory:

main/java : That contains all the JUnit JAVA classes
resources : That contains the resource files needed by the Unit Tests. Each Test which is using one or several resource files, must have
his own repertory in this section. It is then easier to access to the resource files corresponding to a specific Test

To be able to run the tests from the eclipse environment, you will need to add a Variable to the classpath of Datafari :
Right click on the project Build Path Configure Build Path

Now go to the libraries tab and click on "Add Variable", then "Configure Variables" and click on "New". Name it "DATAFARI_CLASSPATH" and for
the Path browse to the Datafari_Home/dist/WEB-INF/classes.Then click "OK" till you return to the Libraries tab and click "Apply" then "OK"

- The second point is that the ant script "datafari-dev.xml" which is used to compile and deploy the web part of Datafari (inluding the servlets) to
the tomcat server, is also configured to automatically run all the JUnit tests found in the Datafari_Home/src/test/main/java directory. So when you
are done with a new development or a modification of Datafari, check the output of this ant script to see if all the tests have passed with success.

- The third and last thing to understand is the kind of Unit Tests we are expecting in Datafari. The usage of Unit Testing is limited in Datafari,
because the product has many interactions with tier applications (ELK, Solr, ManifoldCF, Cassandra) and that it makes no sense to try to mock
those components as they represents the core of Datafari. So, based on this observation, we have focused our Unit Tests on another important
part : the manipulation of the configuration files. It applies for now to the config files of Datafari, Solr and ELK. Our tests generate calls to the

servlets in charge of the modifications/access to the config files and compare their behavior and their outputs to the expected ones. In that way
we insure well formed configuration files and presence of every expected parameters and values.

So now that you know what is our goal with the Unit Tests and that Datafari provides you the tools to make your owns, we hope and encourage
you to enrich Datafari with a lot of Unit Tests.

Utility logs

The 2.2 version of Datafari introduces utility logs, which are distributed in two types:

the Statistics logs
the Core Monitoring logs

Core Monitoring logs

Datafari periodically generates monitoring logs about the main Solr core. Those logs are intended to provide general informations on the core
contents (like number of indexed doc by types, by source, etc.).

By default, the generation rate is once per hour, and can be currently modified through the java class
"com.francelabs.datafari.monitoring.IndexMonitoring".
Here is how monitoring logs look like:

2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:175 -
ec6d7ff440530d73e020766403a3e058|2015-11-06T18:14:00.000+0100|40|no|no
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
dd3fb399e47dced897b708d9c6e78d2f|2015-11-06T18:14:00.000+0100|11|docx|ex
tension
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
039435d1512eb763234a2690fb06c63c|2015-11-06T18:14:00.000+0100|6|pdf|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
611555203c75e7880c8dc67afd41062d|2015-11-06T18:14:00.000+0100|4|txt|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
2ce23ed298b044a3eda0a0e695921024|2015-11-06T18:14:00.000+0100|3|png|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
0fc7bbcad0efcfc2037ae2a2f1fbfe04|2015-11-06T18:14:00.000+0100|2|doc|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
31f8884b788c7872e5b2a286faa42747|2015-11-06T18:14:00.000+0100|2|html|ext
ension

monitoring logs

2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
e155fbb2f018035d65553e763e0d8e63|2015-11-06T18:14:00.000+0100|1|gif|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
c9dc854a334e1dc339d6cdfd10cb37cf|2015-11-06T18:14:00.000+0100|1|jar|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
c10e628086bdc9fe4126c5f9c3b222c6|2015-11-06T18:14:00.000+0100|1|jpg|exte
nsion
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
24ca7afe128eb7b33b36c4919e830509|2015-11-06T18:14:00.000+0100|16|en|lang
uage
2015-11-06 18:14:00 MONITORING
IndexMonitoring$FileShareMonitoringLog:184 -
8879abd5830038c4a630d07526857faf|2015-11-06T18:14:00.000+0100|15|fr|lang
uage
2015-11-06 18:14:00 MONITORING

IndexMonitoring$FileShareMonitoringLog:184 -
dc8834aa358f02cff45e71052dd648c0|2015-11-06T18:14:00.000+0100|30|file|so
urce

They respect a specific format which is:
[log_id] | [timestamp] | [num_doc] | [facet_value] | [facet_field]

Let's explain each field:

[log_id] : the log id. This id IS UNIQUE per time event, per facet value and field, and is generated from these 3 values. The reason behind
this is the .ELK
[timestamp] : the timestamp of the log. It is formatted and could be different from the log4j timestamp so it is mandatory
[num_doc] : the number of documents found according to the facet
[facet_value] : the facet value
[facet_field] : the facet field used, in relation with the facet value

At each monitoring log generation iteration, a log line is created for each facet value of the selected facet fields, plus a log line for the global
number of documents indexed (in that case, the [facet_value] and [facet_field] are both set to "no").
The default selected facet fields are "extension", "language" and "source". One can change the facet fields selected in the class
"com.francelabs.monitoring.IndexMonitoring.FileShareMonitoringLog".

Statistics logs

Datafari generates a statistic log each time a query is performed by a user or he/she clicks on a facet/result/page.
Here is how a statistic log looks like:

2015-11-05 15:24:45 STAT StatsPusher:95 -
508e9b3e-fdb0-4831-8fab-2acad81f1cb5|2015-11-05T14:21:29.740+0100|engine
|0|4|1|7|2|1|[engine//////4///7///1//////, engine///(extension:docx
)///2///6///1//////,
///////////////file:/home/youp/Downloads/doc/Alertes.docx///2]|file:/hom
e/youp/Downloads/doc/Alertes.docx

It respects a specific format which is :
[query_id] | [query_timestamp] | [query] | [noHits] | [numFound] | [numClicks] | [QTime] | [positionClickTot] | [click] | [history] | [spell] | [suggest] |
[url]

Let's explain each field:

[query_id] : the id of the query. This id is used to keep track of the user behaviour.
A query id is generated each time the user clicks on the search button, or presses the "Enter" key when the focus is on the search field of
Datafari. However, when the user performs a "sub-query" like selecting a facet or a page or even clicking on a result, the "sub-query"
keeps the id of the root query.
For example, if the user searches for the word "engine", a query id is generated. Then, if the user clicks on the facet "fr" on the query
results, the facet "sub-query" will keep the id of the root "engine" query. So several log lines can concern one query id as one log is
generated on each action performed
[query_timestamp] : the full timestamp of the query, measured by Datafari
[query] : the literal query performed by the user
[noHits] : indicates if the query does or does not have hits. Two values are possible, '0' if the query has hits, '1' if the query does not have
any hit
[numFound] : the number of documents found for the query
[numClicks] : the number of clicks on the found documents
[QTime] : the query time in milliseconds. This value is directly provided by Solr
[positionClickTot] : represents the sum of the positions of the documents clicked.

statistic log

For example, if the user clicks on the first result and the third, the positionClickTot will be 1+3=4
The positions are absolute and are not based on the page. If there are 10 results by page and the user clicks on the first link of the
second page, the position number will be 11
[click] : like [noHits], it is a boolean value where '0' indicates that the user did not click on any result, and '1' indicates that the user has
clicked on at least on one result.
[history] : keeps track of the user behaviour. It represents a list of user "actions" : [user_action1,user_action2,...]
A user action is formatted as follows: "query"///"facet_used"///"num_doc_found"///"query_time"///"num_of_page"///"url"///"url_position"

"query" : the query performed
"facet_used" : filled if the user has clicked on a facet, it is formatted like this : ("facet_field":"facet_value")
For example, if you look at the second "user action" in the history of the example log : (extension:docx), you can deduce that the
user has clicked on the facet "docx" which is based on the field named "extension")
"num_doc_found" : number of docs returned by the query
"query_time" : the query time measured by Solr
"num_of_page" : the number of the page where was the user
"url" : the URL of the clicked document
"url_position" : the position of the clicked document (first result = 1, second = 2, etc.). Remember that the position is absolute and
based on all the available results.

When the user clicks on a document, only two values of the history are set : the "url" and the "url_position"
[url] : the clicked document URL. This value is only set if the log itself represents the click

Now that the basics are settled, let's decode the example log. Here is what it says :

The log has been generated on a click of the user on a document (the [url] field is not empty)
The original query was "engine", which returned 4 results and took 7 milliseconds
The user has clicked on one document of which the URL is "file:/home/youp/Downloads/doc/Alertes.docx"
Relying on the history, we can say that :

the original query was "engine", returned 4 results and took 7 milliseconds
then the user clicked on the facet "docx" which is based on the field named "extension". This "sub-query" returned 2 results and
took 6 milliseconds
the last action (which is the log subject) is a click on the 2nd result of which the URL is
"file:/home/youp/Downloads/doc/Alertes.docx"

By default, those logs are not displayed in the console, but are written into specifics log files.
The configuration of the log files (path, size, number etc.) can be set in the log4j properties located in tomcat/lib/log4j.properties.

Widgets and CSSs good practices

Datafari allows you to create your own widgets an CSSs and add them to enrich and customize the UI. The cost of such power is of course the
possibility to break everything in the UI. So by reading carefully and following the few steps presented here, you will ensure an easy development,
more compliant code for next Datafari updates, and fast rollback in case of problems:

Modify an existing AjaxFranceLabs widget - On one hand, if you find an improvement or a bug fix on anfor enhancement or bugfix
existing widget, our recommandation is for you to apply your modifications directly on it and create a ticket on our . On another hand,Jira
If you want to change the main behavior or main features of an existing widget, we recommand that you make your own and replace the
original widget by yours in the searchView.jsp and search.js

 an existing CSSModify - Same thing as the widgets: On one hand, if you find an improvement or a bug fixfor enhancement or bugfix
on an existing CSS, you can apply your modifications directly on it and create a ticket on our . On another hand, if you need toJira
change an existing CSS of Datafari, we recommand that you make your own copy and include it in the proper file. A custom css already

, it is available in {Datafari_Home}/tomcat/webapps/Datafari/css/custom/customSearchView.cssexists for the searchView.jsp
Create your own CSS per widget - To make things clean and avoid mess, it is strongly recommended to have at least one separate
CSS file per widget you made. Furthermore, there is a dedicated location for widget CSSs which is
{Datafari_Home}/tomcat/webapps/Datafari/css/widgets
Make one file per widget - If you develop multiple widgets, be sure to have each of them in a separate file. It is easier to maintain and to
deactivate in case of problems.

Search Index

Datafari leverages Solr Cloud for its search capacities. Datafari utilizes 3 distributed Solr indexes. The main index, that contains all the crawled
documents is FileShare.

FileShare index

We do not cover exhaustively the index fields and their configuration, as you can directly check them in the file schema.xml available here :

/opt/datafari/solr/solrcloud/FileShare/conf/schema.xml

https://datafari.atlassian.net/projects/DATAFARI/issues/
https://datafari.atlassian.net/projects/DATAFARI/issues/

Field names

Field Name Description

title_fr contains french title of a document

title_en contains english title of a document

content_fr contains french content of a document (the data is indexed and not stored in the index)

content_en contains english content of a document (the data is indexed and not stored in the index)

content_hl contains the content of the document (not depending on the language). This field is stored and not indexed and is used
for highlighting. This field is truncated with the update processor TruncateFieldUpdateProcessor in the datafari update
chain in solrconfig.xml

source source of the data (for example, Web)

last_modified last modified date of the document

extension file format

allow_token* These fields are used to store information on the access rights of the document

deny_token* These fields are used to store information on the access rights of the document

suggest Stores the terms used for autocompletion

spell Stores the terms used of spellchecking

url url of the document

Field types

FieldTypes for title_* and content_* are text_* (for example, text_en is the fieldType for title_en). This fieldtype contains specific analyzer for full
text search on english text. Analysis phase is described in next section. FieldType for source is string. String FieldType doesn't contains analyzer
and is used for example for facetting capabalities.

Data analysis at the indexing phase

As a reminder, a Lucene analysis chain holds a set of components able to tokenise and filter data in order to extract the terms to be stored in the
index.There is one analysis chain per field. For each field, the analysis chains in Datafari have been optimized. For instance, for field
content_lang1 and title_lang1 the field type text_lang1 includes components such as stemming that are specific to the language. Some other
components have been added, such as the word_delimiter which allows to extract a file name from a URL. The LimitToken Filter is used to limit
the number of terms indexed for each field of each document in order to be able to truncate very big documents before creating the inverted
index. A big index can lead to poor search performances.

Modifying structure of the index

The structure of the index is defined by a schema. The schema template is stored here : /opt/datafari/solr/solrcloud/FileShare/conf/schema.xml.
Then, the schema is loaded (at first start, or on demand with the updateSolrConfig.sh script) in the Zookeeper that holds all Solr configurations.
When the core is loaded, a new file, called managed-schema is created in Zookeeper. This files is a copy of schema.xml and will reflect the
modification pushed through the schema API. For example, the custom fields with the script addCustomSchemaInfo.sh (see dedicated section Cu

).stom Solr configuration

Data Schemas

This section presents the way our data is modeled and used.

User data

Several types of user data are stored and managed by Datafari. It goes from user search history to user roles, including user preferences.

Likes and Favorites Schema

Problematic :

Starting with Datafari 2.0, users have the possibility to store pointers to documents shown in results list.

In the following document, “likes” corresponds to the functionality where a connected user can like or unlike a document, and “favorites”
corresponds to the functionality where a connected user can save a pointer to a document he found in the results list.

Technically wise, we use Apache Cassandra for saving all the likes and favorites and Solr for saving the counters of likes of each document.

Using Cassandra, we cannot use standard relational db schemas, like the following:

Modeling with Nosql in mind:

For our nosql modeling, we took our inspiration from this article .http://docs.mongodb.org/manual/tutorial/aggregation-with-user-preference-data/

Applied to our problematic, we get the following :

That means we have dedicated to likes and favorites (which is distinct from the collection dedicated to user authentication and authorization).

Preferred language

Starting with Datafari 3.2.0, user's preferred language is now automatically saved and applied when user connects to Datafari or change the
language.
The language info is stocked in the 'lang' table of the Cassandra database. This architecture follows the logic that was implemented by the 'Likes
and Favorites' feature.

The 'lang' table is composed of two columns:

username : - it is the PRIMARY KEY of the table and represents the username returned by the Tomcat session.varchar
lang : - represents the lang code that the user has selected ("en", "fr" ...)varchar

The preferred language is saved/applied in several cases :

http://docs.mongodb.org/manual/tutorial/aggregation-with-user-preference-data/

1) User connection

When a user successfully authenticates himself through the 'login.jsp' page, he is redirected by the jsp code to the servlet 'applyLang' (GET HTTP
method). The servlet class is 'com.francelabs.datafari.servlets.ApplyUserLang'.
The servlet try to find a corresponding entry in the 'lang' table of the Cassandra database thanks to the username. Two possibilities :

No entry is found in Cassandra : the servlet creates a new entry with the default selected language which will be the new preferred
language of the user. After this, the servlet redirects to the admin page with the default language.
An entry is found for the provided username : In that case the servlet redirects to the admin page and forces the language retrieved in
Cassandra.

2) User changes the language

When a user changes the language of Datafari, an ajax call with a HTTP POST method is done to the 'applyLang' servlet with the selected
language as POST data. The servlet simply creates/updates the username entry (if the user is authenticated in Datafari) with the provided
language in the 'lang' table of Cassandra

3) Language keeper

The 'main.js' script has been updated to ensure that the 'lang' parameter provided by the url corresponds to the preferred user language.
To do so, an ajax call with a HTTP GET method is performed to the 'applyLang' servlet to retrieve the user preferred language. Two possibilities :

The returned language corresponds to the one provided as a GET parameter : everything is OK, no further treatments.
The returned language does not correspond to the one provided in the url as a GET parameter : the preferred language is forced through
a new call to the 'applyLang' servlet which will redirect to the current page with the correct language.

Roles

	Foreword
	Introduction
	Release notes
	Types of users
	For users
	Search administrator
	Adding a new language
	Configuration modification
	Crawling Files with ManifoldCF
	Extracting file content in ManifoldCF and apply OCR
	Manage Solr configuration with Zookeeper
	Open local files
	OpenSearch
	Security Management
	Solr configuration customization
	Speeding up search queries
	Highlighting configuration

	Optimising the index size
	Users Management
	Update Datafari

	Search experts
	Alerts management - Mail Configuration
	Analytics
	Dynamic analytics
	ELK analytics
	Configure ELK
	Configure ELK (Datafari 3.1 and above)
	Content Analysis
	Content Analysis Over Time
	Usage Statistics

	Search navigation analytics

	Autocomplete configuration
	Connectors configuration
	Crawling
	Add a JDBC connector (MySQL, Oracle)
	Add the JCIFS Connector to Datafari
	Advanced Crawling website
	Reset a MCF job

	Deduplication management
	Facets management
	Favorites management
	Fieldweights
	Likes management
	Promolinks management
	Query Elevator
	Admin UI feature
	Search View Feature

	Stopwords management
	Synonyms

	Search users
	Alerts
	Autocomplete
	Deduplication
	Facets
	Favorites
	Highlighting
	Likes
	Promolinks
	Searching
	Stopwords
	Alerts (from Datafari 3.1)

	For developers
	Add new icon for search results
	Ajaxfrancelabs graphical framework
	Displaying thumbnails for autocomplete and results list
	Framework architecture and mechanism
	Quickly changing the main colors
	Tutorial
	Widgets and Modules

	Add custom fields in Datafari and display them
	Alerts - Architecture and mechanism
	Alerts - technical doc (from 3.1)
	Architecture
	Custom Solr configuration
	Deduplication : Technical note
	ELK
	Faceting
	Manually adding facets to the Datafari UI

	Fieldweights - Architecture and mechanism
	Likes and Favorites
	Logging
	ELK logs exploitation

	Save search - technical doc
	Security
	CustomCombinedRealm - Architecture and mechanism
	Understanding Security Realms

	Semantics
	Link an ontology
	Promolinks - architecture and mechanism
	Synonyms and stopwords

	Setup Development Environments
	Setup development environnement with Eclipse (Linux)
	Setup development environment with Eclipse (Linux) for Datafari 2.0
	Setup development environment with Eclipse (Linux) for Datafari 2.x - Maven
	Setup development environment with Eclipse (Linux) for Datafari 3.1
	Setup development environment with Eclipse (Linux) for Datafari 3.x - Maven

	Unit Testing
	Utility logs
	Core Monitoring logs
	Statistics logs

	Widgets and CSSs good practices
	Search Index
	Data Schemas
	User data
	Likes and Favorites Schema
	Preferred language
	Roles

